• Title/Summary/Keyword: hybrid optimization technique

Search Result 131, Processing Time 0.023 seconds

A Hybrid Soft Computing Technique for Software Fault Prediction based on Optimal Feature Extraction and Classification

  • Balaram, A.;Vasundra, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.348-358
    • /
    • 2022
  • Software fault prediction is a method to compute fault in the software sections using software properties which helps to evaluate the quality of software in terms of cost and effort. Recently, several software fault detection techniques have been proposed to classifying faulty or non-faulty. However, for such a person, and most studies have shown the power of predictive errors in their own databases, the performance of the software is not consistent. In this paper, we propose a hybrid soft computing technique for SFP based on optimal feature extraction and classification (HST-SFP). First, we introduce the bat induced butterfly optimization (BBO) algorithm for optimal feature selection among multiple features which compute the most optimal features and remove unnecessary features. Second, we develop a layered recurrent neural network (L-RNN) based classifier for predict the software faults based on their features which enhance the detection accuracy. Finally, the proposed HST-SFP technique has the more effectiveness in some sophisticated technical terms that outperform databases of probability of detection, accuracy, probability of false alarms, precision, ROC, F measure and AUC.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Hybrid Differential Evolution Technique for Economic Dispatch Problems

  • Jayabarathi, T.;Ramesh, V.;Kothari, D. P.;Pavan, Kusuma;Thumbi, Mithun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.476-483
    • /
    • 2008
  • This paper is aimed at presenting techniques of hybrid differential evolution for solving various kinds of Economic Dispatch(ED) problems such as those including prohibited zones, emission dispatch, multiple fuels, and multiple areas. The results obtained for typical problems are compared with those obtained by other techniques such as Particle Swarm Optimization(PSO) and Classical Evolutionary Programming(CEP) techniques. The comparison of the results proves that hybrid differential evolution is quite favorable for solving ED problems with no restrictions on the shapes of the input-output functions of the generator.

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

Direction Vector for Efficient Structural Optimization with Genetic Algorithm (효율적 구조최적화를 위한 유전자 알고리즘의 방향벡터)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the modified genetic algorithm, D-GA, is proposed. D-GA is a hybrid genetic algorithm combined a simple genetic algorithm and the local search algorithm using direction vectors. Also, two types of direction vectors, learning direction vector and random direction vector, are defined without the sensitivity analysis. The accuracy of D-GA is compared with that of simple genetic algorithm. It is demonstrated that the proposed approach can be an effective optimization technique through a minimum weight structural optimization of ten bar truss.

  • PDF

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Integrated Optimal Design of Hybrid Structural Control System using Multi-Stage Goal Programming Technique (다단계 목표계획법을 이용한 복합구조제어시스템의 통합최적설계)

  • 박관순;고현무;옥승용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.93-102
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system may be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. In the multi-stage goal programming, design targets(or goals) are at first selected too correspond too several stages and the objective function is th n defined as the sum of the normalized distances between these design goals and each of the physical values, that is, the inter-story drifts and the capacities of the control system. Finally, the goal-updating genetic algorithm searches for optimal solutions satisfying each stage of design goals and, if a solution exists, the levels of design goals are consecutively updated to approach the global optimal solution closest too the higher level of desired goals. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

Optimum Technique for WATM Error Control in Indoor Environment (실내환경에서의 WATM 최적화 기법 연구)

  • Kang, Young-Heung;Shin, Song-Sup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1027-1035
    • /
    • 2000
  • In this paper, we have proposed the optimum technique for wireless ATM (WATM) error control in indoor environment. As the optimum technique, the conventional concatenated FEC only is regarded as the efficient error control method for time-critical ATM traffic in AWGN, and the pilot symbol-added fading compensation with the concatenated FEC is required to optimize the WATM performance in fading environment. Also, the truncated Type- H hybrid ARQ technique will be developed for quality-critical ATM traffic in order to improve its throughput. Therefore, this paper presents the optimization of WATM performance in indoor environment by means of evaluating above techniques using theoretical analysis and simulation.

  • PDF

Modeling and Simulation Technique of Two Quadrant Chopper and PWM Inverter-Fed IPMSM Drive System and Its Application to Hybrid Vehicles

  • Murata, Toshiaki;Kawatsu, Utaro;Tamura, Junji;Tsuchiya, Takeshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • This paper presents a state space model of a two quadrant chopper and PWM inverter-fed Interior Permanent Magnet Synchronous Motor (IPMSM) drive system and its application to hybrid vehicles. The drive system has two different state equations for motoring and regenerating action. This paper presents a common state equation by using State Space Averaging method. Using this model of the IPMSM drive system, detailed simulation and controller design of the drive system, including PWM inverter switching, are given. The validity of this model and usefulness, according to a comparison among Maximum Torque/Ampere control, Maximum Torque/Flux control, and Maximum Efficiency optimization, are confirmed from simulation results.