• Title/Summary/Keyword: hybrid optimization technique

Search Result 131, Processing Time 0.026 seconds

Structural Dynamics Modification of Structures Having Non-Conforming Nodes Using Component Mode Synthesis and Evolution Strategies Optimization Technique (부분 구조 모드 합성법 및 유전 전략 최적화 기법을 이용한 비부합 절점을 가진 구조물의 구조변경)

  • 이준호;정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.651-659
    • /
    • 2002
  • Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degree-of-freedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be non-conforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the non-conforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

  • PDF

Query Optimization Scheme using Query Classification in Hybrid Spatial DBMS (하이브리드 공간 DBMS에서 질의 분류를 이용한 최적화 기법)

  • Chung, Weon-Il;Jang, Seok-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.290-299
    • /
    • 2008
  • We propose the query optimization technique using query classification in hybrid spatial DBMS. In our approach, user queries should to be classified into three types: memory query, disk query, and hybrid query. Specialty, In the hybrid query processing, the query predicate is divided by comparison between materialized view creating conditions and user query conditions. Then, the deductions of the classified queries' cost formula are used for the query optimization. The optimization is mainly done by the selection algorithm of the smallest cost data access path. Our approach improves the performance of hybrid spatial DBMS than traditional disk-based DBMS by $20%{\sim}50%$.

A developed hybrid method for crack identification of beams

  • Vosoughi, Ali.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.401-414
    • /
    • 2015
  • A developed hybrid method for crack identification of beams is presented. Based on the Euler-Bernouli beam theory and concepts of fracture mechanics, governing equation of the cracked beams is reformulated. Finite element (FE) method as a powerful numerical tool is used to discritize the equation in space domain. After transferring the equations from time domain to frequency domain, frequencies and mode shapes of the beam are obtained. Efficiency of the governed equation for free vibration analysis of the beams is shown by comparing the results with those available in literature and via ANSYS software. The used equation yields to move the influence of cracks from the stiffness matrix to the mass matrix. For crack identification measured data are produced by applying random error to the calculated frequencies and mode shapes. An objective function is prepared as root mean square error between measured and calculated data. To minimize the function, hybrid genetic algorithms (GAs) and particle swarm optimization (PSO) technique is introduced. Efficiency, Robustness, applicability and usefulness of the mixed optimization numerical tool in conjunction with the finite element method for identification of cracks locations and depths are shown via solving different examples.

A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch (레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘)

  • 이문규;권기범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo;Woo, Dong-Kyun;Lim, Dong-Kuk;Jung, Sang-Yong;Lee, Cheol-Gyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.859-865
    • /
    • 2014
  • Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.

Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure (하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

Reconfigurable Multidisciplinary Design Optimization Framework (재구성이 가능한 다분야통합최적설계 프레임웍의 개발)

  • Lee, Jang-Hyo;Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Modern engineering design problems involve complexity of disciplinary coupling and difficulty of problem formulation. Multidisciplinary design optimization can overcome the complexity and design optimization software or frameworks can lessen the difficulty. Recently, a growing number of new multidisciplinary design optimization techniques have been proposed. However, each technique has its own pros and cons and it is hard to predict a priori which technique is more efficient than others for a specific problem. In this study, a software system has been developed to directly solve MDO problems with minimal input required. Since the system is based on MATLAB, it can exploit the optimization toolbox which is already developed and proven to be effective and robust. The framework is devised to change an MDO technique to another as the optimization goes on and it is called a reconfigurable MDO framework. Several numerical examples are shown to prove the validity of the reconfiguration idea and its effectiveness.

A Numerical Approach for Station Keeping of Geostationary Satellite Using Hybrid Propagator and Optimization Technique

  • Jung, Ok-Chul;No, Tae-Soo;Kim, Hae-Dong;Kim, Eun-Kyou
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary satellite. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then, this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Nonlinear simulation results have been shown to support such concept.

An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem (요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구)

  • Han, Hyun-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

Reliability Optimization Problems using Adaptive Hybrid Genetic Algorithms

  • Minoru Mukuda;Yun, Young-Su;Mitsuo Gen
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.179-182
    • /
    • 2003
  • This paper proposes an adaptive hybrid genetic algorithm (aHGA) for effectively solving the complex reliability optimization problems. The proposed aHGA uses a loca1 search technique and an adaptive scheme for respectively constructing hybrid algorithm and adaptive ability. For more various comparisons with the proposed adaptive algorithm, other aHGAs with conventional adaptive schemes are considered. These aHGAs are tested and analyzed using two complex reliability optimization problems. Numerical result shows that the proposed aHGA outperforms the other competing aHGAs.

  • PDF