• 제목/요약/키워드: hybrid optimization

검색결과 799건 처리시간 0.03초

다단계 혼성근사화에 기초한 대형구조계의 설계최적화 (Design Optimization of Large Scale Structural Systems based on Multilevel Hybrid Approximation)

  • 김경일;박종회;황진하
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 2002
  • A new optimization procedure with approximate reanalysis module, using the staged hybrid methods with substructuring, is proposed in is study. In this procedure, displacements are calculated with two step mixed procedures. First step is to introduce the conservative approximation, which is a hybrid form of the linear and reciprocal approximation, as local approximation. In the next step, it is combined with the global approximation by reduced basis approach. The quality of reanalyzed quantities can be greatly improved through these staged hybrid approximations, specially for large changes in the design. Overall procedures are based on substructuring scheme. Several numerical examples illustrate the validity and effectiveness of the proposed methods.

  • PDF

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권4호
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용 (The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

동적 부하모델 파라미터 추정을 위한 시뮬레이션 기반 최적화 기법 비교 연구 (Comparative Study on Proposed Simulation Based Optimization Methods for Dynamic Load Model Parameter Estimation)

  • 마누엘리토 델카스텔로;송화창;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.187-188
    • /
    • 2011
  • This paper proposes the hybrid Complex-PSO algorithm based on the complex search method and particle swarm optimization (PSO) for unconstrained optimization. This hybridization intends to produce faster and more accurate convergence to the optimum value. These hybrid will concentrate on determining the dynamic load model parameters, the ZIP model and induction motor model parameters. Measurement-based parameter estimation, which employs measurement data to derive load model parameters, is used. The theoretical foundation of the measurement-based approach is system identification. The main objective of this paper is to demonstrate how the standard particle swarm optimization and complex method can be improved through hybridization of the two methods and the results will be compared with that of their original forms.

  • PDF

유전 알고리듬을 이용한 자동 동조 퍼지 제어기의 하이브리드 최적화 기법 (Hybrid Optimization Techniques Using Genetec Algorithms for Auto-Tuning Fuzzy Logic Controllers)

  • 유동완;이영석;박윤호;서보혁
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.36-43
    • /
    • 1999
  • This paper proposes a new hybrid genetic algorithm for auto-tuning fuzzy controllers improving the performance. In general, fuzzy controllers use pre-determined moderate membership functions, fuzzy rules, and scaling factors, by trial and error. The presented algorithm estimates automatically the optimal values of membership functions, fuzzy rules, and scaling factors for fuzzy controllers, using a hybrid genetic algorithm. The object of the proposed algorithm is to promote search efficiency by the hybrid optimization technique. The proposed hybrid genetic algorithm is based on both the standard genetic algorithm and a modified gradient method. If a maximum point is not be changed around an optimal value at the end of performance during given generation, the hybrid genetic algorithm searches for an optimal value using the the initial value which has maximum point by converting the genetic algorithms into the MGM(Modified Gradient Method) algorithms that reduced the number of variables. Using this algorithm is not only that the computing time is faster than genetic algorithm as reducing the number of variables, but also that can overcome the disadvantage of genetic algoritms. Simulation results verify the validity of the presented method.

  • PDF

인공생명 알고리듬을 이용한 저널 베어링의 최적설계 (Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용 (Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark

  • Fan, Debin;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5972-5989
    • /
    • 2019
  • With the onset of the big data age, data is growing exponentially, and the issue of how to optimize large-scale data processing is especially significant. Large-scale global optimization (LSGO) is a research topic with great interest in academia and industry. Spark is a popular cloud computing framework that can cluster large-scale data, and it can effectively support the functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution (DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel algorithm, in which the RDD and island models are employed. The island model is used to divide the global population into several subpopulations, which are applied to reduce the computational time by corresponding to RDD's partitions. To preserve population diversity and avoid premature convergence, the evolutionary strategy of DE is integrated into SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm obtains better optimization performance through experimental results.