• Title/Summary/Keyword: hybrid key combination

Search Result 28, Processing Time 0.033 seconds

Incorporating RSA with a New Symmetric-Key Encryption Algorithm to Produce a Hybrid Encryption System

  • Prakash Kuppuswamy;Saeed QY Al Khalidi;Nithya Rekha Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.196-204
    • /
    • 2024
  • The security of data and information using encryption algorithms is becoming increasingly important in today's world of digital data transmission over unsecured wired and wireless communication channels. Hybrid encryption techniques combine both symmetric and asymmetric encryption methods and provide more security than public or private key encryption models. Currently, there are many techniques on the market that use a combination of cryptographic algorithms and claim to provide higher data security. Many hybrid algorithms have failed to satisfy customers in securing data and cannot prevent all types of security threats. To improve the security of digital data, it is essential to develop novel and resilient security systems as it is inevitable in the digital era. The proposed hybrid algorithm is a combination of the well-known RSA algorithm and a simple symmetric key (SSK) algorithm. The aim of this study is to develop a better encryption method using RSA and a newly proposed symmetric SSK algorithm. We believe that the proposed hybrid cryptographic algorithm provides more security and privacy.

Create a hybrid algorithm by combining Hill and Advanced Encryption Standard Algorithms to Enhance Efficiency of RGB Image Encryption

  • Rania A. Tabeidi;Hanaa F. Morse;Samia M. Masaad;Reem H. Al-shammari;Dalia M. Alsaffar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.129-134
    • /
    • 2023
  • The greatest challenge of this century is the protection of stored and transmitted data over the network. This paper provides a new hybrid algorithm designed based on combination algorithms, in the proposed algorithm combined with Hill and the Advanced Encryption Standard Algorithms, to increase the efficiency of color image encryption and increase the sensitivity of the key to protect the RGB image from Keyes attackers. The proposed algorithm has proven its efficiency in encryption of color images with high security and countering attacks. The strength and efficiency of combination the Hill Chipper and Advanced Encryption Standard Algorithms tested by statical analysis for RGB images histogram and correlation of RGB images before and after encryption using hill cipher and proposed algorithm and also analysis of the secret key and key space to protect the RGB image from Brute force attack. The result of combining Hill and Advanced Encryption Standard Algorithm achieved the ability to cope statistically

Preliminary design and structural responses of typical hybrid wind tower made of ultra high performance cementitious composites

  • Wu, Xiangguo;Yang, Jing;Mpalla, Issa B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.791-807
    • /
    • 2013
  • Ultra High Performance Cementitious Composites with compressive strength 200MPa (UHPCC-200) is proposed for the structural design of super high hybrid wind turbine tower to gain durability, ductility and high strength design objectives. The minimal wall thickness is analyzed using basic bending and compression theory and is modified by a toque influence coefficient. Two cases of wall thickness combination of middle and bottom segment including varied ratio and constant ratio are considered within typical wall thickness dimension. Using nonlinear finite element analysis, the effects of wall thickness combinations with varied and constant ratio and prestress on the structural stress and lateral displacement are calculated and analyzed. The design limitation of the segmental wall thickness combinations is recommended.

Enhancing Security of Transaction Session in Financial Open API Environment Using Hybrid Session Protection Protocol Combined with NTRU (NTRU를 결합한 하이브리드 세션 보호 프로토콜을 이용한 금융 오픈 API 환경의 거래 세션 안전성 강화)

  • Sujin Kwon;Deoksang Kim;Yeongjae Park;Jieun Ryu;Ju-Sung Kang;Yongjin Yeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.75-86
    • /
    • 2023
  • Public key cryptography algorithm such as RSA and ECC, which are commonly used in current financial transaction services, can no longer guarantee security when quantum computers are realized. Therefore it is necessary to convert existing legacy algorithms to Post-Quantum Cryptography, but it is expected that will take a considerable amount of time to replace them. Hence, it is necessary to study a hybrid method combining the two algorithms in order to prepare the forthcoming transition period. In this paper we propose a hybrid session key exchange protocol that generates a session key by combining the legacy algorithm ECDH and the Post-Quantum Cryptographic algorithm NTRU. We tried the methods that proposed by the IETF for TLS 1.3 based hybrid key exchange, and as a result, it is expected that the security can be enhanced by applying the protocol proposed in this paper to the existing financial transaction session protection solution.

A Review of Graphene Plasmons and its Combination with Metasurface

  • Liu, Chuanbao;Bai, Yang;Zhou, Ji;Zhao, Qian;Qiao, Lijie
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.349-365
    • /
    • 2017
  • Graphene has attracted a lot of attentions due to the unique electrical and optical properties. Compared with the noble metal plasmons in the visible and near-infrared frequencies, graphene can support surface plasmons in the lower frequencies of terahertz and mid-infrared and it demonstrates an extremely large confinement at the surface because of the particular electronic band structures. Especially, the surface conductivity of graphene can be tuned by either chemical doping or electrostatic gating. These features make graphene a promising candidate for plasmonics, biosensing and transformation optics. Furthermore, the combination of graphene and metasurfaces presents a powerful tunability for exotic electromagnetic properties, where the metasurfaces with the highly-localized fields offer a platform to enhance the interaction between the incident light and graphene and facilitate a deep modulation. In this paper, we provide an overview of the key properties of graphene, such as the surface conductivity, the propagating surface plasmon polaritons, and the localized surface plasmons, and the hybrid graphene/metasurfaces, either metallic and dielectric metasurfaces, from terahertz to near-infrared frequencies. Finally, there is a discussion for the current challenges and future goals.

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

Survey on the Authentication and Key Management of 802.11s

  • Lam, Jun Huy;Lee, Sang-Gon;Tan, Whye Kit
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.89-92
    • /
    • 2012
  • Wireless Mesh Network expanded the capability of the conventional wireless networking by allowing the nodes to operate in proactive mode, reactive mode or the combination of both, the hybrid mode in the multi-hopping nature. By doing so, the links between the nodes become much more robust and reliable because of the number of paths to reach a destination node from a source node can be more than 1 and do not need to rely on the access point (AP) alone to relay the messages. As there may be many possible ways to form an end-to-end link between 2 nodes, the routing security becomes another main concern of the 802.11s protocol. Besides its reliance on the 802.11i for the security measures, 802.11s also includes some new features such as the Mesh Temporal Key (MTK) and the Simultaneous Authentication of Equals (SAE). The authentication and key management (AKM) process of 802.11s were observed in this paper.

  • PDF

Experimental investigating the properties of fiber reinforced concrete by combining different fibers

  • Ghamari, Ali;Kurdi, Javad;Shemirani, Alireza Bagher;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • Adding fibers improves concrete performance in respect of strength and plasticity. There are numerous fibers for use in concrete that have different mechanical properties, and their combination in concrete changes its behavior. So, to investigate the behavior of the fiber reinforced concrete, an in vitro study was conducted on concrete with different fiber compositions including different ratios of steel, polypropylene and glass fibers with the volume of 1%. Two forms of fibers including single-stranded and aggregated fibers have been used for testing, and the specimens were tested for compressive strength and dividable tensile strength (splitting tensile) to determine the optimal ratio of the composition of fibers in the concrete reinforced by hybrid fibers. The results show that the concrete with a composition of steel fibers has a better performance than other compounds. In addition, by adding glass and propylene fibers to the composition of steel fibers, the strength of the samples is reduced. Also, if using the combination of fibers is required, the use of a combination of glass fibers with steel fibers will provide a better compressive strength and tensile strength than the combination of steel fibers with propylene.

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.