• Title/Summary/Keyword: hybrid flux

Search Result 246, Processing Time 0.029 seconds

Influences of B Number Effect on the Burning Rate of Solid Fuel in Single Port Hybrid Rocket (Single Port 하이브리드 로켓의 고체연료 물질전달수(B Number)를 고려한 연소특성 연구)

  • Lee, Jung-Pyo;Kim, Soo-Jong;Yoo, Woo-June;Cho, Sung-Bong;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.264-270
    • /
    • 2008
  • Most of burning rate models used in hybrid combustion depend solely on oxidizer flux. But this empirical relation can not represent well the important effect of the thermo-chemical properties of solid fuel and thereby requires different value of empirical exponent and constant for each fuel considered. In this study, a new burning rate correlation was proposed using the mass transfer number(B number) which encompasses the thermochemistry effect of solid fuel and the aerodynamic effect caused by the combustion on the solid fuel surface where the effect of aerodynamic property in the mass transfer number was studied. The PMMA, PP, and PE were chosen as fuel, and gas oxygen as oxidizer. The new empirical burning rate expression depending on both the oxidizer flux and the mass transfer number was able to predict the burning rate of each fuel with just a single exponent value and constant, and it was found that the aerodynamic effect on the blowing effect did show a minor effect on the burning rate correlation.

Characteristic Analysis of a Hybrid Excited Flux Switching PM Motor by Using the Equivalent Magnetic.Electric Circuit Method (가변자속형 FSPM 전동기의 등가 전.자기회로를 이용한 특성해석)

  • Jang, Jin-Seok;Lee, Jae-Gwang;Kim, Byung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.818-819
    • /
    • 2011
  • 본 논문은 가변자속 기능을 가지는 Flux Switching Permanent Magnet (FSPM) 전동기의 전 자기적 등가회로를 이용한 특성해석방법을 다룬다. 우선 가변자속 기능을 갖는 FSPM 전동기의 구조와 동작원리를 설명하였다. 다음으로 오버행을 고려한 2-D유한요소 해석 모델을 이용하여 역기전력, 인덕턴스를 구하였다. 마지막으로 등가회로 해석을 통해 가변자속 운전 시 FSPM 전동기의 특성해석을 실시하였다.

  • PDF

Flux Pinning in $MgB_2$ Film with Columnar Grains (기둥형 결정립 구조를 지닌 $MgB_2$ 박막에서 자속고정 현상)

  • Kim, D.H.;Kim, H.Y.;Hwang, T.J.;Lee, S.H.;Seong, W.K.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2008
  • [ $MgB_2$ ] films grown by hybrid physical chemical vapor deposition under appropriate growth conditions commonly exhibit columnar grain structure. The grain boundaries between adjacent columnar grains have been reported to be good flux pinning centers. In this work, we measured the angular dependence of critical current density ($J_c$) and observed the enhanced flux pinning when an external magnetic field was aligned parallel to the columnar direction. This $J_c$ was almost comparable to the $J_c$ for intrinsic pinning case up to 1 T at low temperatures, indicating that grain boundary pinning is very effective. At high fields, however, $J_c$ decreased rapidly resulting from the fact that the density of flux pinning centers provided by grain boundaries was outnumbered by the flux density.

  • PDF

A Study on the Optimization of Deburring Process for the Micro Channel using EP-MAP Hybrid Process (전해-자기 복합 가공을 이용한 마이크로 채널 디버링공정 최적화)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.298-303
    • /
    • 2013
  • Magnetic abrasive polishing is one of the most promising finishing methods applicable to complex surfaces. Nevertheless this process has a low efficiency when applied to very hardened materials. For this reason, EP-MAP hybrid process was developed. EP-MAP process is expected to machine complex and hardened materials. In this research, deburring process using EP-MAP hybrid process was proposed. EP-MAP deburring process is applied to micro channel, thereby it can obtain both deburring process and polishing process. EP-MAP deburring process on the micro channel was performed. Through design of experiment method, error of height in this process according to process parameter is analyzed. When the level 1 parameter A(magnetic flux density) and level 2 parameter B(electric potential), C(working gap) and level 3 parameter D(feed rate) are applied in the deburring process using EP-MAP hybrid process, it provides optimum result of EP-MAP hybrid deburring process.

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

Treatment of oily wastewater from cold-rolling mill through coagulation and integrated membrane processes

  • Cheng, Xue-Ni;Gong, Yan-Wen
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2018
  • The feasibility of applying coagulation-integrated microfiltration (MF) as a pretreatment for an ultrafiltration (UF) feed in oily wastewater treatment was investigated. The effects of different coagulants on oil removal rates from wastewater were studied. The maximum oil removal rate of 82% was obtained after coagulation with 130 mg/L of polyaluminium chloride (PAC). UF flux reached $95L/(m^2{\cdot}h)$ with coagulation-integrated MF as pretreatment. This value was 2.5 times higher than that flux obtained without pretreatment. The value of UF flux increased as the transmembrane pressure (TMP) and cross-flow velocity (CFV) of the UF module increased. UF flux gradually increased when TMP and CFV exceeded 0.4 MPa and 3 m/s, respectively, because of concentration polarization and membrane fouling stabilization. Chemical oxygen demand reduction and oil removal rate reached 95.2% and 98.5%, respectively, during integrated membrane processing with a PAC concentration of 130 mg/L, TMP of 0.4 MPa, and CFV of 3 m/s for UF. In addition, sequentially cleaning the fouling membrane with NaOH and $HNO_3$ aqueous solutions caused UF flux to recover to 90%. These encouraging results suggested that the hybrid integrated membrane process-based coagulation and MF + UF are effective approaches for oily wastewater treatment.

A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD

  • Ranot, Mahipal;Duong, P.V.;Bhardwaj, A.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • $MgB_2$ thin films with superior superconducting properties are very promising for superconducting magnets, electronic devices and coated conductor electric power applications. A clear understanding of flux pinning mechanism in $MgB_2$ films could be a big aid in improving the performance of $MgB_2$ by the enhancement of $J_c$. The fabrication advancement and the understanding of flux pinning mechanism of $MgB_2$ thin and thick films fabricated by using hybrid physical-chemical vapor deposition (HPCVD) are reviewed. The distinct kind of $MgB_2$ films, such as single-crystal like $MgB_2$ thin films, $MgB_2$ epitaxial columnar thick films, and a-axis-oriented $MgB_2$ films are included for flux pinning mechanism investigation. Various attempts made by researchers to improve further the flux pinning property and $J_c$ performance by means of doping in $MgB_2$ thin films by using HPCVD are also summarized.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.