• Title/Summary/Keyword: hybrid experimental method

Search Result 688, Processing Time 0.032 seconds

A Study on the Speed Sensorless Vector Control for Induction Motor Adaptive Control Method using a High Frequency Boost Chopper of Hybrid Type Piezoelectric Transformer (하이브리드형 압전 변압기의 고주파 승압 초퍼를 이용한 적응제어기법 유도전동기 속도 센서리스 벡터제어에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Yeong-Wook;Choi, Song-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.332-345
    • /
    • 2013
  • In this paper, recently, it is described to the piezoelectric transformer technology develops, because it was have to favorable characteristics such as electromagnetic-noise free, compact size, higher efficiency, and superior power density, flux linkage, noiseless, etc. its resonance frequency was used to output waveform of a sine wave. A rotor speed identification method of induction motor based on the theory of flux model reference adaptive system(FMRAS). The estimator execute the rotor speed identification so that the vector control of the induction motor may be achieved. The improved auxiliary variable of the model are introduced to perform accurate rotor speed estimation. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM techniuqe and DC-DC converter. High speed calculation and processing for vector control is carried out by digital signal one chip microprocessor. Validity of the proposed control method is verified through simulation and experimental results.

Radarsat-1 Doppler Information Extraction Technique Using Both Received Echo Data and Orbital and Attitude Information of Satellite (신호자료 및 궤도정보를 이용한 Radarsat-1 도플러 정보 추출기법 연구)

  • 고보연;나원상;이용웅
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.421-430
    • /
    • 2003
  • The extraction technique for Doppler information(Doppler centroid frequency(f$_{dc}$) and it's rate(f$_{r}$) is very important to make an image from the radar echo signal data. Clutterlock and auto-focusing techniques have been widely used to extract accurate Doppler information. But both techniques are not easy to implement in SAR processor and need quite lots of time to calculate accurate f$_{dc}$ and f$_{r}$ because they are generally based on echo signal data only. In this paper we suggest hybrid method for Doppler extraction using both of echo signal data and orbital and attitude information of satellite. In this method CDE(Correlation Doppler Estimation) technique is only used to estimate exact modular f$_{dc}$ using received echo signal data and rest of other algorithms are based on simple mathematical model of geometry between satellite and ground targets as well as the Doppler frequency ambiguity resolving problem. The experimental results using Radarsat-1 signal data shows that the proposed method can be effectively used for the extraction of Doppler information.

Piezoelectric 6-dimensional accelerometer cross coupling compensation algorithm based on two-stage calibration

  • Dengzhuo Zhang;Min Li;Tongbao Zhu;Lan Qin;Jingcheng Liu;Jun Liu
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.101-109
    • /
    • 2023
  • In order to improve the measurement accuracy of the 6-dimensional accelerometer, the cross coupling compensation method of the accelerometer needs to be studied. In this paper, the non-linear error caused by cross coupling of piezoelectric six-dimensional accelerometer is compensated online. The cross coupling filter is obtained by analyzing the cross coupling principle of a piezoelectric six-dimensional accelerometer. Linear and non-linear fitting methods are designed. A two-level calibration hybrid compensation algorithm is proposed. An experimental prototype of a piezoelectric six-dimensional accelerometer is fabricated. Calibration and test experiments of accelerometer were carried out. The measured results show that the average non-linearity of the proposed algorithm is 2.2628% lower than that of the least square method, the solution time is 0.019382 seconds, and the proposed algorithm can realize the real-time measurement in six dimensions while improving the measurement accuracy. The proposed algorithm combines real-time and high precision. The research results provide theoretical and technical support for the calibration method and online compensation technology of the 6-dimensional accelerometer.

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile (자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발)

  • Park, K.G.;Moon, H.K.;Oh, S.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

An Experimental Study for Effect Organic/Inorganic Hybrid based Durability Promoting Agent(DPA) on the Properites of concrete (유무기 복합형 내구성개선제가 콘크리트 물성에 미치는 효과에 대한 실험적 연구)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jeong, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.801-804
    • /
    • 2008
  • Performance for the resistant to chlorides penetration is required in order to increase durability of seaside construction. For this reason, it is important to acquire simultaneously watertightness, resistance for crack of concrete and chemical fixation effect of chloride in it. In this study, High durability promoting agents(HD) consist of inorganic salt and active components were applied to enhancing resistance for chloride ion penetration against concrete based on mix(composition of binder : OPC+SLG) of seaside construction. Tang's experimental method was utilized to investigate the resistances of chloride ion penetration of concrete such as chloride ion diffusion coefficient and penetration depth. It was confirmed that resistance of chloride ion penetration of concrete by 0.6% addition of HD was improved to $11.3^{\sim}20.5$% than non-added concrete.

  • PDF

Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation (콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의)

  • 이광명
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.235-243
    • /
    • 1996
  • The mechanical behavior ot concrete is strongly influenced by various scenarios of crack initiation and crack propagation. Recently. the study of the interface fracture and cracking in interfacial regions is emerged as an important field, in the context of the developement of high performance concrete composites. The crack path criterion for elastically homogeneous materials is not valid when the crack advances at an interface because. in this case, the consideration of the relative magnitudes of the fracture toughnesses between the constituent materials and the interface are involved. In this paper, a numerical method is presented to obtain the values of two interfacial fracture parameters such as the energy release rate and the phase angle at the tip of an existing interface crack. Criteria based on energy release rate concepts are suggested for the prediction of crack growth at the interfaces and an hybrid experimental-numerical study is presented on the two-phase beam composite models containing interface cracks to investigate the cracking scenarios in interfacial regions. In general, good agreement between the experimental results and the prediction from the criteria is obtained.

Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams (CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구)

  • Moon, A Hae;Shin, Jiuk;Lim, Chang Gue;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

Preliminary Experimental Study for Water Recovery and Particulate Matter Reduction through a Hybrid System that Combines Exhaust Cooling and Absorption from Ships (선박배출 배기냉각과 흡수식이 결합된 하이브리드 시스템을 통한 물 회수 및 미세먼지 저감을 위한 기초실험연구)

  • Youngmin Kim;Donggil Shin;Younghyun Ryu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1252-1258
    • /
    • 2022
  • The exhaust gas from the marine engines include a quantity of water vapor and particulate matter. The total particulate matter includes filterable particulate matter (FPM) and condensable particulate matter (CPM) that condense after releasing into the atmosphere. The portion of CPM is higher than that of FPM that is removable through the filter before discharging. An experimental setup for waste heat and water recovery and removal of CPM in the exhaust gas was tested using an industrial gas boiler in the laboratory. The water and CPM in the exhaust gas were removed through the first stage of cooling method and further removed through the second stage of absorption method. The efficiencies of water recovery were 73% after the first stage of cooling method and 90% after the second stage of absorption method. At the same time, the CPM was removed by 80-90% through the processes. The waste heat recovered could be used to process heat, and the water recovered could be used to process water in the ship. Furthermore, the CPM, which is a major source of the particulate matter but not subject to administrative regulation, could be removed effectively.

A Hybrid Search Method of A* and Dijkstra Algorithms to Find Minimal Path Lengths for Navigation Route Planning (내비게이션 경로설정에서 최단거리경로 탐색을 위한 A*와 Dijkstra 알고리즘의 하이브리드 검색법)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.109-117
    • /
    • 2014
  • In navigation route planning systems using A* algorithms, the cardinality of an Open list, which is a list of candidate nodes through which a terminal node can be accessed, increases as the path length increases. In this paper, a method of alternately utilizing the Dijkstra's algorithm and the A* algorithm to reduce the cardinality of the Open list is investigated. In particular, by employing a depth parameter, named Level, the two algorithms are alternately performed depending on the Level's value. Using the hybrid searching approach, the Open list constructed in the Dijkstra's algorithm is transferred into the Open list of the A* algorithm, and consequently, the unconstricted increase of the cardinality of the Open list of the former algorithm can be avoided and controlled appropriately. In addition, an optimal or nearly optimal path similar to the Dijkstra's route, but not available in the A* algorithm, can be found. The experimental results, obtained with synthetic and real-life benchmark data, demonstrate that the computational cost, measured with the number of nodes to be compared, was remarkably reduced compared to the traditional searching algorithms, while maintaining the similar distance to those of the latter algorithms. Here, the values of Level were empirically selected. Thus, a study on finding the optimal Level values, while taking into consideration the actual road conditions remains open.