• Title/Summary/Keyword: hybrid electric vehicle

Search Result 439, Processing Time 0.023 seconds

An Experimental Study on the Noise Reduction Method of HEV-relay Module (하이브리드 자동차용 계전기 모듈의 소음저감에 관한 실험적 연구)

  • Seo, Jae-Yong;Kim, Won-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.77-83
    • /
    • 2010
  • In this paper, the noise of HEV(hybrid electric vehicle)-relay module during the turn-on and turnoff switching is experimentally analyzed and an effective method is proposed to reduce the impact noise. First, enclosure methods of 100A relay part with urethane and silicon are tested to find out a better material to isolate the noise. This result shows that the urethane is a better for the noise isolation of relay, so the relays enclosed by urethane are installed in the relay module. Second, the noise of HEV-relay module is analyzed experimentally to identify the noise generation mechanism. From this result, it is found that the vibration transmitted to battery pack through bolt generates the structural borne noise with the frequency band of 200~2000 Hz, which is more serious when the switch is turned off. Finally, the direction of switching and the joint structure are modified in order to isolate the vibration transmitted to battery back. Both methods are very effective to reduce the switching noise.

Investigating the Impacts of Different Price-Based Demand Response Programs on Home Load Management

  • Rastegar, Mohammad;Fotuhi-Firuzabad, Mahmud;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1125-1131
    • /
    • 2014
  • Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

High Power Density 50kW Bi-directional Converter for Hybrid Electric Vehicle HDC (하이브리드 자동차용 HDC를 위한 50kW급 고전력밀도 양방향 컨버터)

  • Yang, Jung-Woo;Keum, Moon-Hwan;Choi, Yoon;Kim, Seok-Joon;Kim, Sam-Gyun;Kim, Jong-Pil;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.221-222
    • /
    • 2015
  • 본 논문은 하이브리드 자동차 HDC(High voltage DC-DC Converter)를 위한 고전력밀도 양방향 컨버터를 제안한다. 기존 HDC는 낮은 동작주파수로 인하여 인덕터 전류 리플 만족을 위해 큰 인덕터 용량이 요구될 뿐만 아니라 대전류 구동시 인덕터의 자기포화를 방지하기 위해 코어의 크기가 커지는 단점이 있다. 본 논문에서 제안하는 양방향 컨버터는 고속 스위칭 특성이 우수한 SiC-FET의 적용을 통해 인덕터의 용량을 저감할 수 있다. 뿐만 아니라 2상 인터리브드 방식의 적용을 통해 입출력 커패시터의 고밀도화를 획득할 수 있으며, 각 상의 인덕터를 하나의 DM(Differential Mode) 커플드 인덕터로 구현함으로써 인덕터 자화전류 offset을 제거할 수 있으므로 인덕터의 고밀도화에 매우 유리하다. 제안된 HDC 양방향 컨버터의 타당성 검증을 위하여 50kW급 시작품 제작을 통한 실험 결과를 제시한다.

  • PDF

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

Development of the Calorimeter to Measure Heat Rate Generated from Battery for EV & HEV (전기자동차용 축전지의 발열량 측정을 위한 열용량계 개발)

  • Yang Cheol-Nam;Park Seong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.218-220
    • /
    • 1999
  • The performance of the Electric Vehicle and Hybrid Electric Vehicle depends on that of the battery pack composed of series connected batteries. And thermal property is one of the main factors which decide the performance of the battery pack. So heat generation rate from the battery under the various driving mode must be measured as precise as possible because thermal characteristics of the battery affect the driving performance and battery pack's life cycle. Besides, to design and develop the battery thermal management system for the EV and HEV, the measurements of the thermal properties of the batteries are needed. However, the established calorimeter is not adequate to test an EV's battery because its cavity is too small to accommodate the EV's battery. Therefore we developed the calorimeter to test the thermal property of the EV's battery. Its cavity size is 120mm long, 75mm wide and 200mm high. The calorimeter is calibrated by the dummy cell which generates the heat rate from zero to 200W. The measuring accuracy of the calorimeter is within $2\%$ and its voltage stability is 2.5mV in the constant temperature bath.