• Title/Summary/Keyword: hybrid driving

Search Result 307, Processing Time 0.024 seconds

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

Behavior and Durability Analysis of Tractor applying a hybrid power system (하이브리드 동력시스템을 적용한 트랙터의 동적 거동 및 내구해석)

  • Kim, Byeong Sam;Lim, Gwang Gue
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • This paper described on the motion of hybrid tractor trajectory for powertrain system. The dynamics behavior used to the tractor according to the characteristics of the road surface using $Daful^@$ analysis. The tractor industry is facing to a big problem about rising gas price and exhaust gas environment. Because it was possible overcoming the past drawback, hybrid vehicle had been decided as the best technical way since it has started operating the internal combustion engine with the electric power as the motive power. The vehicle structures have designed the model of a major power transmission factor. The simulation realized in this paper that motion of tractor being turned by torque and force of each joints. Driving characteristics, especially in recent years, IVHS (Intelligent Vehicle Tractor / System) technology, while receiving a lot of attention because of the tractor and the need to pursue high function is emerging as a more and more.

Simulation for Electro-Optic Characteristics of the Fringe-Field Driven Reflective Hybrid Aligned Nematic Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정디스플레이의 전기-광학 특성에 관한 시뮬레이션)

  • 박지혁;정태봉;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays (LCDs) driven by fringe field. The results show that the optimal retardation value (dΔn) of the cell is 0.289 ${\mu}$m, which allows for the cell to have a practical cell gap of larger than 3 ${\mu}$m when manufacturing. A reflectance of the dark state is only 0.114 % for an incident light 550 nm. At this condition, the light efficiency of white state reaches 92.7 %. The display with optimized cell parameters shows that the contrast ratio greater than 5 exists over 600 of polar angle in all directions and lower driving voltage than that of fringe-field driven homogeneously aligned reflective LCD.

On the Development of a Spatial Hybrid Visual Alignment System (3차원 하이브리드 비전 정렬 시스템에 관한 연구)

  • Hwang, Jae-Woong;Kwon, Sang-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.79-87
    • /
    • 2011
  • In this paper, suggested is a hybrid-type visual alignment system to align mask and panel in 3-D space, where mask and panel are to be controlled independently by two individual positioning mechanisms in order to compensate for spatial misalignments. In the hybrid visual alignment system, the below 4-PPR parallel mechanism provides in-plain motions to pattern mask like the other conventional alignment systems while the above 4-RPS parallel mechanism is to move glass panel to achieve a complete spatial alignment. For the control of the hybrid alignment system, first, inverse kinematic solutions for the parallel mechanisms are given to determine the driving distance of each active joint, and also an efficient way to determine the spatial alignment error is developed by exploiting three in-plane cameras.

Fuel Cell Hybrid Power System for Railway Vehicles (철도차량용 연료전지 하이브리드 동력시스템)

  • Kim, Young-Ryul;Park, Young-Ho;Kim, Young-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.855-861
    • /
    • 2008
  • The development of fuel cell hybrid power system, as a next generation power system for solving the global warming, has been being made actively progress around passenger vehicles. Also, in case of railway vehicles in unelectrified railway line, the adoption of fuel cell hybrid power system is being studied around well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system in order to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration and provides simulation results to evaluate their validity.

  • PDF

Narrow Viewing Angle Characteristics of a Fringe-Field Driven Hybrid Aligned Nematic Liquid Cystal Display (Fringe-Field 구동형 Hybrid Aligned Nematic 액정 디스플레이의 좁은 시야각 특성 연구)

  • Lee, Ji-Youn;Ryu, Jae-Woo;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.440-441
    • /
    • 2006
  • We have studied the narrow viewing angle liquie crystal displays (LCDs) using a hybrid aligned nematic liquid crystal (LC) cell driven by a fringe field. The device using a LC with positive dielectric anisotropy has a relatively low transmittance. This paper describes how to improve light efficiency by optimizing electrode structure. The results show that the device exhibits a high transmittance of 90%, low driving voltage and narrow viewing angle less than $20^{\circ}$ along horizontal direction which is highly effective for private display application.

  • PDF

Development of a Multi-disciplinary Video Identification System for Autonomous Driving (자율주행을 위한 융복합 영상 식별 시스템 개발)

  • Sung-Youn Cho;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • In recent years, image processing technology has played a critical role in the field of autonomous driving. Among them, image recognition technology is essential for the safety and performance of autonomous vehicles. Therefore, this paper aims to develop a hybrid image recognition system to enhance the safety and performance of autonomous vehicles. In this paper, various image recognition technologies are utilized to construct a system that recognizes and tracks objects in the vehicle's surroundings. Machine learning and deep learning algorithms are employed for this purpose, and objects are identified and classified in real-time through image processing and analysis. Furthermore, this study aims to fuse image processing technology with vehicle control systems to improve the safety and performance of autonomous vehicles. To achieve this, the identified object's information is transmitted to the vehicle control system to enable appropriate autonomous driving responses. The developed hybrid image recognition system in this paper is expected to significantly improve the safety and performance of autonomous vehicles. This is expected to accelerate the commercialization of autonomous vehicles.

A Study on the Characteristics of the Clutch Automation Mechanism of Hybrid Vehicles (하이브리드 차량용 클러치 자동화 기구의 특성 연구)

  • Lim, Won-Sik;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • Due to the increase of oil price, the needs of the reduction of the fuel cost is rising. Therefore, necessity of hybrid vehicle that runs with engine and the electric motor is on the rise. In order to improve the performance of hybrid vehicle, many researches is carried out. Hybrid vehicles have been developed with the various layout such as serial type, parallel type, power split type, and multi-mode type. The multi-mode hybrid vehicles are designed to show the efficient driving characteristics at low speed and high speed. But the multi-mode system have the problem such as frequent clutch engagement. Frequent clutch engagement causes the shock of vehicles, and the shock inhibits the ride comfort. In this study, automation mechanism of clutch operation is proposed to mitigate the shock at engaging clutch. For this purpose, the dynamic characteristics of motor control is numerically analyzed by using Matlab/Simulink.

A Patent Analysis on the Battery and Rechageable System of the Plug-in Hybrid Car (플러그인 하이브리드 자동차의 배터리와 충전시스템의 특허분석)

  • Chang, Jin-Geon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.97-107
    • /
    • 2009
  • Recent technologies of the car are focused on improving vehicle's fuel efficiency and developing alternative energy sources. These technologies bring on the development of hybrid car. On the other hand, because of short driving distance, low efficiency of charging and high price, energy storage system need to improve the storage capability. It is very important to understand the existing technologies, grasp the existing patent and establish the technical target to improve the energy storage system. In this paper, technology trends of energy storage system of the hybrid car are analyzed. This study was based on the applied and registered patent in Korea, Japan, U.S.A and Europe until December 2008. The analyses are divided into two categories: a battery system and charging system of the hybrid car. The facts of the level of technology, trends of the R&D of leading companies, key patents, blank of the technology were analyzed. Finally the future R&D strategy of hybrid car are established.