• Title/Summary/Keyword: hybrid blending

Search Result 56, Processing Time 0.03 seconds

Manufacture and Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 제조 및 기계적 특성)

  • Chung Sang-Su;Park Ji-Sang;Kim Tae-Wook;Kong Jin-Woo
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2005
  • Carbon nanofiber exhibits superior and of ien unique characteristics of mechanical, electrical, chemical and thermal properties. Despite of the excellent properties of carbon nanofiber, the properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, for improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the dispersion of carbon nanofiber. solution blending method using ultrasonic was used. Dispersion of carbon nanoifiber was observed by scanning electron microscope (SEH). Mechanical properties were measured by universal testing machine(UTM).

Synthesis of Polyurethane/Epoxy Hybrid Resin used for Damper of Loudspeaker (스피커용 댐퍼에 사용되는 폴리우레탄/에폭시 하이브리드 수지의 합성)

  • Choi, Hyun-Seuk;Choi, Dong-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • As a coating material for loudspeaker dampers, resilient polyurethane/epoxy hybrid resins were synthesized to replace conventional phenol resin and examined the physical properties, which are not only environmentally friendly but also not harmful to human. Five types of polyurethane resins were synthesized in the step-shot method using methylene diisocyanate, three polyols such as poly tetramethylene ether glycol(PTMEG, MW:2000), poly(1,4-buthylene adipate(PBAP, MW:2000), and poly carbonatediol(PCD, MW:2000), and three chain extenders such as ethylene glycol(EG), neopentyl glycol(NPG), and 1,4-buthandiol(1,4-BD). The five types of synthesized polyurethane resins and commercially available bisphenol A type epoxy resin were blended in weight ratios of 90:10, 70:30, and 50:50 to synthesize 15 types of polyurethane/epoxy hybrid resins. Among the polyurethane resins, the one that was synthesized using PCD and 1,4-BD showed excellent tensile strength, 100% modulus, low extension, and relatively high viscosity. Polyurethane/epoxy hybrid resins with higher epoxy resin contents showed better thermal properties and water resistance while those with higher polyurethane contents showed higher flexibility. The polyurethane/epoxy hybrid resin made by blending the polyurethane based on PCD and 1,4-BD with a bisphenol A type epoxy resin in a weight ratio of 70:30 was identified to be the most suitable to be used in speaker dampers.

Preparation and Characterization of Lignin/Chlorinated Polyvinyl Chloride Blended Fibers for Low-cost Carbon Fiber (저가 탄소섬유용 Lignin/Chlorinated Polyvinyl Chloride 블렌딩 섬유의 제조 및 특성)

  • Jo, Chaehyun;Lee, Sangoh;Kang, Dakyung;Hong, Seonghwa;Kang, Chankyu;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • In this study, lignin/chlorinated poly(vinyl chloride)(CPVC) blended fibers have been produced for the development of low-cost carbon fiber. Carbon fiber manufacturing was accomplished through stabilization and carbonization process. The lignin/CPVC blended fibers were prepared by wet spinning method. Dimethylacetamid e(DMAc) and cychlohexanone in a ratio of 5:1(wt%) was employed as co-solvent. The ratio of lignin/CPVC was prepared at 0/10, 1/9, 2/8, 3/7, 4/6, and 5/5(wt%). The spinning solution was extruded at a rate of 0.1 to 0.4ml/min according to the blending ratio. The speed of the rollers was the same for all ratios(draw ratio=1). Analysis of fiber cross-section by scanning eletron microscopy(SEM) showed that as the lignin ratio increased in the same coagulation bath and distilled water, the pore size of the spinning fiber decreased. Therefore, the highest tensile strength of the blending fibers was 6.3±1.2MPa at the 5/5 ratio. The carbon fiber also showed the best tensile strength of 120.78±2.43MPa at 5/5 ratio.

Blending of Silica Nanoparticles with PBA/PS Core-Shell Baroplastic Polymers (PBA/PS 코어-셀 압력가소성 고분자와 실리카 나노입자의 블렌딩)

  • Kim, Min-Jeong;Choi, Yong-Doo;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • PBA/PS core-shell polymer nanoparticles were synthesized by two stage emulsion polymerization and hybridized with silica nanoparticle by simple mixing in emulsion state and following precipitation into water/methanol mixture dissolving $Na_2CO_3$. The stress-strain curve revealed that the elastic modulus was increased with increasing molecular weight of polymer and silica weight fraction but decreased with increasing size of core-shell nanoparticle. Especially, there was a rapid increase of elastic modulus with silica blending. As a result, 6 times higher elastic modulus was observed in PBA/PS core-shell baroplastic sample processed at 25$^\circ$C under 13.8 MPa for 5 min by blending with 13.0 wt% of silica nanoparticle.

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite (POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성)

  • Han, Jae Hee;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.

Processing Characteristics of Nylon 6 by Controlling the Melt Viscosity (용융 점도 조절에 의한 나일론6의 가공특성 연구)

  • Kim Hyogap;Kim Jun Kyung;Lim Soonho;Lee Kunwong;Park Min;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.565-570
    • /
    • 2005
  • Melt processing characteristics of nylon 6 (N6) has been investigated by controlling the melt viscosity in melt impregnation process. Calcium stearate (CaST) was introduced as a lubricant for N6 and the melt viscosity of N6 decreased with adding only 1 wt$\%$ of CaST. In addition, reactive blending with polycaprolactone (PCL) was carried out by lowering the melt viscosity in N6. It was found that the melt viscosity of N6 could be controlled and further melt viscosity drop could be obtained by applying phenyl phosphite (PP) and diphenyl phosphite (DPP) to enhance the transesterification between N6 and PCL. Our approaches show that the melt viscosity of N6 could be reduced without loss of thermal stability which is the critical problem in high temperature melt impregnation process of N6.

Preparation and Characterization of SPAES/SPVdF-co-HFP Blending Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 술폰화된 폴리(아릴렌 이써 설폰)/SPVdF-co-HFP 브렌딩 멤브레인의 제조 및 특성 분석)

  • PARK, CHUL JIN;KIM, AE RHAN;YOO, DONG JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • In this work, preparation and characterizations of hybrid membranes containing sulfonated poly(arylene ether sulfone) (SPES) and sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP) (20, 30 or 40 wt%) were carried out. The structure of hybrid membranes was confirmed using X-ray diffraction (XRD) analysis and the Fourier transform infrared (FT-IR) spectroscopy. The prepared SPAES/SPVdF-30 membrane exhibits higher ionic conductivity of 68.9 mS/cm at $90^{\circ}C$ and 100% RH. Besides, the other studies showed that the hybrid membrane has good oxidation stability, thermal stability, and mechanical stability. Thus, we believe that the prepared hybrid membrane is suitable for the development of membranes for fuel cell applications.

Strain Rate Effect on tensile properties of Hooked Steel Fiber and PVA Fiber hybrid reinforced cementitious composites (후크형 강섬유와 PVA섬유를 하이브리드 보강한 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Baek, Jae-Uk;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.208-209
    • /
    • 2018
  • In this study, the tensile properties of hybrid fiber reinforced cementitious composites under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance performance of hooked steel fiber at strain rate 101/s.

  • PDF

Combustion Charateristics of Biomass Blends on a 15KW Pulverized Coal furnaces (15kW급 미분탄 연소로내에서 바이오매스 혼소율 변화에 따른 연소 특성 비교)

  • Lee, Sangmin;Sung, Yonmo;Choi, Minsung;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.41-44
    • /
    • 2014
  • This study focused on the effect of the biomass blended ratio on air-staged pulverized coal furnace. The hybrid NOx reduction technology between fuel blending and air staging has been applied in an air-staged pulverized coal fired furnace. The results indicated that co-firing biomass with coal could reduce NOx emissions in an air-staged combustion. In addition, carbon burnout and flame temperature increased under the air-staged condition. A dominant synergistic effect on NOx reduction and carbon burnout was observed when biomass co-firing with coal was applied in air staged combustion.

  • PDF

POSS/Polyurethane Hybrids and Nanocomposites: A Review on Preparation, Structure and Performance

  • Diao, Shuo;Mao, Lixin;Zhang, Liqun;Wang, Yiqing
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • Polyhedral oligomeric silsesquioxane (POSS) is an important inorganic-organic hybrid material with a three-dimensional structure. Polyurethane (PU) is a widely applied polymer that has versatile properties with the change of two phase structure. When POSS is incorporated into PU by physical or chemical methods, many properties can be greatly improved, such as mechanical properties, thermal stability, biodegradation resistance, and water resistance. This paper reviews the recent progress in preparation, structure, and performance of POSS-modified polyurethane from the viewpoint of physical blending and chemical modification.