• 제목/요약/키워드: hybrid bearings

검색결과 50건 처리시간 0.028초

Seismic behavior of structures isolated with a hybrid system of rubber bearings

  • Chen, Bo-Jen;Tsai, C.S.;Chung, L.L.;Chiang, Tsu-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.761-783
    • /
    • 2006
  • The enlargement of interest in base isolators as an earthquake-proof design strategy has dramatically accelerated experimental studies of elastomeric bearings worldwide. In this paper, a new base isolator concept that is a hybrid system of rubber bearings is proposed. Uniaxial, biaxial, and triaxial shaking table tests are also performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. Experimental results demonstrate that structures with a hybrid system of rubber bearings composed of stirruped rubber bearings and laminated rubber bearings can actually decrease the seismic responses of the superstructure. It has been proved through the shaking table tests that the proposed hybrid system of rubber bearings is a very promising tool to enhance the seismic resistance of structures. Moreover, it is demonstrated that the proposed analytical model in this paper can predict the mechanical behavior of the hybrid system of rubber bearings and seismic responses of the base-isolated structures.

동수압 베어링으로 지지되는 연성축의 자기 베어링을 이용한 진동제어에 관한 연구 (A Study on the Vibration Control Using Magnetic Bearings of the Flexible Shaft Supported by Hydrodynamic Bearings)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • 제10권2호
    • /
    • pp.43-50
    • /
    • 1994
  • The hydrodynamic bearing is accepted in many rotating systems because it has a large load carrying capacity. But the anisotropic pressure distribution of the bearing can arise the unstable vibration phenomenon over a certain speed. The magnetic bearing is an active element so that the unstable phenomenon of the hydrodynamic bearing, which is induced by the anisotropic support pressure of the oil film, can be controlled if the control algorithm and the controller gains are chosen appropriately. In this study, we investigate the stabilization method of the hydrodynamic bearing system composing the hybrid bearing which is the single unit of hydrodynamic bearing and magnetic bearing. The load carrying conditions of the hybrid bearing is modelled by the sum of the stiffness and damping coefficients of the hydrodynamic and the magnetic bearings in each direction. The dynamics of the rotor is analyzed by the Finite Element Method and the stability limit is determined by the eigenvalues of the hybrid bearings and shaft system. The eigenvalue study of the system shows that the stability limit of the hybrid bearing is increased compared to that of the hydrodynamic bearing. A Small increment of the stiffness and damping coefficient of the hybrid bearings by the magnetic actuators can increase the stability limit of the system. In this paper we tried to show the design references of the hybrid bearings by using the nondimensional bearing parameters. The analysis results show the possibilities of the stability limit increment of the hydrodynamic bearing system by combining the magnetic bearing.

공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종;이용복
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

플라이휠 에너지 저장장치를 위한 저 전력소모 하이브리드 마그네틱 베어링의 설계 (Design of Low Power Consumption Hybrid Magnetic Bearing for Flywheel Energy Storage System)

  • 김우연;이종민;배용채;김승종
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.717-726
    • /
    • 2010
  • For the application into a 1 kWh flywheel energy storage system(FESS), this paper presents the design scheme of radial and axial hybrid magnetic bearings which use bias fluxes generated by permanent magnets. In particular, the axial hybrid magnetic bearing is newly proposed in this paper, in which a permanent magnet is arranged in axial direction so that it can support the rotor weight as well as provide a bias flux for axial magnetic bearing. Such hybrid magnetic bearings consume very low power, compared with conventional electromagnetic bearings. In this paper, to stably support a 140 kg flywheel rotor without contact, design process is explained in detail, and magnetic circuit analysis and three-dimensional finite element analysis are carried out to determine the design parameters and predict the performance of the magnetic bearings.

Performance of Hydrostatic/hybrid Journal Symmetric/asymmetric Bearings using Slot-entry Restrictor Under Couple Stress Lubricants

  • Ram, Nathi;Yadav, Saurabh Kumar;Sharma, Satish C.
    • Tribology and Lubricants
    • /
    • 제33권5호
    • /
    • pp.187-201
    • /
    • 2017
  • This paper presents the impact of couple stress lubricant on performance of slot-entry hydrostatic/hybrid journal symmetric/asymmetric bearings. Reynolds Equation using Finite Element Technique has been solved for the flow of couple stress and Newtonian lubricants in bearings. The results have been computed for concentric design pressure ratio(${\beta}^{\ast}=0.5$), slot width ratio (SWR = 0.25) and chosen parameters of couple stress lubricant ${\bar{l}}=5$, 10, 15. It is observed that numerically simulated outcomes for slot-entry journal bearings, considering the influence of couple stress lubricant indicate a substantial improvement in the performance of the bearing.

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

Thrust Hybrid Magnetic Bearing using Axially Magnetized Ring Magnet

  • Park, Cheol Hoon;Choi, Sang Kyu;Ahn, Ji Hoon;Ham, Sang Yong;Kim, Soohyun
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.302-307
    • /
    • 2013
  • Hybrid-type magnetic bearings using both permanent magnets and electromagnets have been used for rotating machinery. In the case of conventional thrust hybrid magnetic bearings supporting axial loads, radially magnetized permanent ring magnets, which have several demerits such as difficult magnetization and assembly, have been used to generate bias flux. In this study, a novel thrust hybrid magnetic bearing using an axially magnetized permanent ring magnet is presented. Because it is easy to magnetize a ring magnet in the axial direction, the segmentation of the ring magnet for magnetization is not required and the assembly process can be simplified. For verifying the performance of the proposed method, a test rig that consists of a proposed thrust magnetic bearing and variable loads is constructed. This paper presents the detailed design procedures and the obtained experimental results. The results show that the developed thrust magnetic bearing has the potential to replace conventional thrust magnetic bearings.

인공생명 알고리듬을 이용한 저널 베어링의 최적설계 (Optimum Design of journal Bearing by the Enhanced Artificial Life Optimization Algorithm)

  • 송진대;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.400-403
    • /
    • 2004
  • This paper presents an optimum design of journal bearings using a hybrid method to find the solutions of optimization problem. The present hybrid algorithm, namely Enhanced Artificial Life Algorithm(EALA), is a synthesis of an artificial life algorithm(ALA) and the random tabu search(R-tabu) method. EALA is applied to the optimum design of journal bearings supporting simple rotor. The applicability of EALA to optimum design of rotor-bearing system is exemplified through this study.

  • PDF

받침배치에 따른 연속 플레이트 거더 사교의 지진거동 변화 (Variation of Seismic Behavior of Continuous Skew Plate Girder Bridges According to the Arrangement of Bearings)

  • 문성권
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.124-135
    • /
    • 2011
  • 연속교의 교대부와 교각부에 설치되는 받침 용량은 통상적으로 각 지점에 작용하는 최대수직반력의 크기에 따라 결정되며 교각부에 더 큰 용량의 받침이 위치한다. 본 연구에서는 지진격리장치가 적용된 세 가지 받침배치에 따른 사교의 지진거동 변화를 비교 분석하여 연속 사교의 지진성능 향상 가능성을 검토하였다. 기존 받침배치(Case A)를 기준으로 교각부에 설치되는 납고무받침(LRB)의 수평강성에 변화를 주어 세 가지 받침배치(Case A, Case B, Case C)를 선정하였다. 납고무받침 자체의 감쇠효과가 고려된 hybrid response spectrum을 이용한 응답스펙트럼 해석을 수행하여 총 36개의 연속 플레이트 거더 사교들의 지진거동을 조사하였다. 해석결과 교대부에 설치된 LRB와 유사한 수평강성 또는 작은 수평강성을 가진 LRB를 교각부에 설치할 때 훨씬 바람직한 사교의 지진거동이 유발되었다. 즉, 교각부에 설치되는 LRB의 수평강성 변화는 사교의 고유진동주기를 길게 하고 모드형상에 변화를 유발시켜 전체밑면전단력과 교각부에서의 최대밑면전단력 그리고 거더에 걸리는 응력을 크게 감소시킨다. 비록 하부구조의 유연성이 증가할수록 받침배치 변경에 따른 지진거동의 긍정적인 효과가 다소 감소되지만, 10m 미만의 교각 높이를 가지면서 지진격리받침(LRB)이 설치된 연속 플레이트 거더 사교의 경우 제안된 받침배치는 지진성능 향상을 가져온다.