• Title/Summary/Keyword: hybrid base isolation system

Search Result 24, Processing Time 0.026 seconds

Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building (하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

LRB-based Hybrid Base Isolation Systems for Seismically Excited Cable-Stayed Bridges (지진하중을 받는 사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • 정형조;박규식;이헌재;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.527-534
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation systems employing additional active/semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal hydraulic actuators (HAs) and ideal magnetorheological dampers (MRDs) are considered as additional active and semiactive control devices, respectively. Numerical simulation results show that all the hybrid base isolation systems are effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base isolation system employing semiactive MRBs is robust to the stiffness uncertainty of the structure, while the hybrid system with active HAs is not. Therefore, the LRB-based hybrid base isolation system employing MRDs could be more appropriate in real applications for full-scale civil infrastructures.

  • PDF

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.

Seismic Protection of Cable-stayed Bridges Using LRB and MR Damper (납-고무받침과 자기유변유체 감쇠기를 이용한 사장교의 내진제어)

  • 정형조;박규식;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.241-245
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation system employing additional semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal magnetorheological dampers (MRDs) are considered as additional semiactive control devices. Numerical simulation results show that the hybrid base isolation system is effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base Isolation system employing semiactive MRDs is robust to the stiffness uncertainty of the structure. Therefore, the LRB-based hybrid base isolation system employing MRDs could be appropriate in real applications for full-scale civil infrastructures.

  • PDF

Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System (하이브리드 면진장치의 뉴로-퍼지 모형화)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection

  • Murase, Mitsuru;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.649-670
    • /
    • 2013
  • It is known that a base-isolated building exhibits a large response to a long-duration, long-period wave and an inter-connected system without base-isolation shows a large response to a pulse-type wave. To compensate for each deficiency, a new hybrid passive control system is investigated in which a base-isolated building is connected to another building (free wall) with oil dampers. It is demonstrated that the present hybrid passive control system is effective both for pulse-type ground motions and long-duration and long-period ground motions and has high redundancy and robustness for a broad range of disturbances.

Application of Performance Based Design Concept using Hybrid-type Base-Isolation System (Hybrid-type 면진장치를 이용한 성능설계 개념의 적용)

  • Chun, Young-Soo;Whang, Ki-Tea;Rim, Jong-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.502-505
    • /
    • 2004
  • Now for the first time in Korea pilot project on application of base isolation system to the RC building is carrying out by collaboration with KNHC and DRB dongil. The hybrid-type base isolation system, which is composed of sliding bearings and laminated rubber bearings and can make the resonance period of base isolated buildings comparatively long up to 4 or 5 seconds, is applied to this building. In this paper the overview of this project, the dynamic characteristics of this particular building and the response reduction effect against earthquakes are presented.

  • PDF

LRB-based hybrid base isolation systems for cable-stayed bridges (사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, Billie-F.Jr.;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.63-76
    • /
    • 2004
  • This paper presents LRB-based hybrid base isolation systems employing additional active/semiactive control devices for mitigating earthquake-induced vibration of a cable-stayed 29 bridge. Hybrid base isolation systems could improve the control performance compared with the passive type-base isolation system such as LRB-installed bridge system due to multiple control devices are operating. In this paper, the additional response reduction by the two typical additional control devices, such as active type hydraulic actuators controlled by LQG algorithm and semiactive-type magnetorheological dampers controlled by clipped-optimal algorithm, have been evaluated bypreliminarily investigating the slightly modified version of the ASCE phase I benchmark cable-stayed bridge problem (i.e., the installation of LRBs to the nominal cable-stayed bridge model of the problem). It shows from the numerical simulation results that all the LRB based hybrid seismic isolation systems considered are quite effective to mitigate the structural responses. In addition, the numerical results demonstrate that the LRB based hybrid seismic isolation systems employing MR dampers have the robustness to some degree of the stiffness uncertainty of in the structure, whereas the hybrid system employing hydraulic actuators does not. Therefore, the feasibility of the hybrid base isolation systems employing semiactive additional control devices could be more appropriate in realfor full-scale civil infrastructure applications is clearly verified due to their efficacy and robustness.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.