• Title/Summary/Keyword: hybrid algorithm

Search Result 1,931, Processing Time 0.032 seconds

KNN/ANN Hybrid Location Determination Algorithm for Indoor Location Base Service (실내 위치기반서비스를 위한 KNN/ANN Hybrid 측위 결정 알고리즘)

  • Lee, Jang-Jae;Jung, Min-A;Lee, Seong-Ro;Song, Iick-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So artificial neural network(ANN) clustering algorithm is applied to improve KNN, which is the KNN/ANN hybrid algorithm presented in this paper. For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of ANN based on SNR. Then, the k RPs are classified into different clusters through ANN based on SNR. Experimental results indicate that the proposed KNN/ANN hybrid algorithm generally outperforms KNN algorithm when the locations error is less than 2m.

A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm (하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구)

  • 오성권
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.555-565
    • /
    • 1999
  • The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy modeling implements system structure and parameter identification using the fuzzy inference methods and hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance index with weighting factor is proposed to achieve a balance between performance results of fuzzy model produced for the training and testing data. Two numerical examples are used to evaluate the performance of the proposed model.

  • PDF

Hybrid Controller of Neural Network and Linear Regulator for Multi-trailer Systems Optimized by Genetic Algorithms

  • Endusa, Muhando;Hiroshi, Kinjo;Eiho, Uezato;Tetsuhiko, Yamamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1080-1085
    • /
    • 2005
  • A hybrid control scheme is proposed for the stabilization of backward movement along simple paths for a vehicle composed of a truck and six trailers. The hybrid comprises the combination of a linear quadratic regulator (LQR) and a neurocontroller (NC) that is trained by a genetic algorithm (GA). Acting singly, either the NC or the LQR are unable to perform satisfactorily over the entire range of the operation required, but the proposed hybrid is shown to be capable of providing good overall system performance. The evaluation function of the NC in the hybrid design has been modified from the conventional type to incorporate both the squared errors and the running steps errors. The reverse movement of the trailer-truck system can be modeled as an unstable nonlinear system, with the control problem focusing on the steering angle. Achieving good backward movement is difficult because of the restraints of physical angular limitations. Due to these constraints the system is impossible to globally stabilize with standard smooth control techniques, since some initial states necessarily lead to jack-knife locks. This paper demonstrates that a hybrid of neural networks and LQR can be used effectively for the control of nonlinear dynamical systems. Results from simulated trials are reported.

  • PDF

Hybrid Control with a Bang-Bang Type Controller (Bang-Bang 형태의 제어기를 갖는 복합제어)

  • 박규식;정형조;조상원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.193-200
    • /
    • 2003
  • This paper presents a hybrid (i.e., integrated passive-active) system for seismic response control of a cable-stayed bridge. Because multiple control devices are operating, a hybrid control system could alleviate some of the restrictions and limitations that exist when each system is acting alone. Lead rubber bearings are used as passive control devices to reduce the earthquake-induced forces in the bridge and hydraulic actuators are used as active control devices to further reduce the bridge responses, especially deck displacements. In the proposed hybrid control system, a linear quadratic Gaussian control algorithm is adopted as a primary controller. In addition, a secondary bang-bang type (i.e., on-off type) controller according to the responses of lead rubber bearings is considered to increase the controller robustness. Numerical simulation results show that control performances of the hybrid control system are superior to those of the passive control system and slightly better than those of the fully active control system. Furthermore, it is verified that the hybrid control system with a bang-bang type controller is more robust for stiffness perturbation than the active controller with μ-synthesis method and there are no signs of instability in the overall system whereas the active control system with linear quadratic Gaussian algorithm shows instabilities in the perturbed system. Therefore, the proposed hybrid protective system could effectively be used to seismically excited cable-stayed bridges.

  • PDF

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Improving the Training Performance of Neural Networks by using Hybrid Algorithm (하이브리드 알고리즘을 이용한 신경망의 학습성능 개선)

  • Kim, Weon-Ook;Cho, Yong-Hyun;Kim, Young-Il;Kang, In-Ku
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2769-2779
    • /
    • 1997
  • This Paper Proposes an efficient method for improving the training performance of the neural networks using a hybrid of conjugate gradient backpropagation algorithm and dynamic tunneling backpropagation algorithm The conjugate gradient backpropagation algorithm, which is the fast gradient algorithm, is applied for high speed optimization. The dynamic tunneling backpropagation algorithm, which is the deterministic method with tunneling phenomenon, is applied for global optimization. Conversing to the local minima by using the conjugate gradient backpropagation algorithm, the new initial point for escaping the local minima is estimated by dynamic tunneling backpropagation algorithm. The proposed method has been applied to the parity check and the pattern classification. The simulation results show that the performance of proposed method is superior to those of gradient descent backpropagtion algorithm and a hybrid of gradient descent and dynamic tunneling backpropagation algorithm, and the new algorithm converges more often to the global minima than gradient descent backpropagation algorithm.

  • PDF

Hybrid Watermarking Algorithm for MPEG Video (MPEG 비디오를 위한 하이브리드 워터마킹 알고리즘)

  • Lee, Hyeong-Hun;Bae, Chang-Seok;Choe, Jae-Hun;Choe, Yun-Sik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3157-3164
    • /
    • 1999
  • In this paper, we propose a hybrid watermarking algorithm for an MPEG bitstream. Our hybrid watermarking technique uses a spread spectrum technique for I-frames and a motion vector technique for P- and B-frames. Thus, the proposed algorithm makes it possible to watermark all MPEG frames. By applying this technique, it is possible not only to protect intellectual property rights but also be robust against various kinds of attacks to remove watermark. And this scheme requires only partial decoding of an MPEG bitstream, so it is applicable to real-time watermarking applications.

  • PDF

Controller Transition Management of Hybrid Position Control System for Unmanned Expedition Vehicles (무인탐사차량의 위치제어를 위한 복합제어 시스템의 제어기 전이관리)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.969-976
    • /
    • 2008
  • A position control problem is studied for UEV(Unmanned Expedition Vehicles), which is to follow pre-determined paths via fixed way-points. Hybrid control systems are used for position control of UEV depending on the operating condition. Speed control consists of three controllers: PID control, adaptive PI control, and neural network. Heading control consists of two controllers, PID and adaptive PID control. The controllers are selected based on the changes of road conditions. We suggest an adaptive PI control algorithm for speed control and an transition management algorithm among the controllers. The algorithm adapts the road conditions and variation of vehicle dynamical characteristics and selects a suitable controller.

The operation algorithm of the 1kW fuel cell-battery hybrid power system (1kW급 연료전지-배터리 복합 전원 시스템의 운용 알고리즘 구현)

  • Park, Jinju;Chae, Suyong;Song, Yujin;Han, Soobin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.95-96
    • /
    • 2013
  • In this paper, an operation algorithm for the fuel cell-battery hybrid power system is proposed. As the output current slope of the fuel cell is normally limited to protect the fuel cells' defection, efficient power distribution algorithm between the fuel cell and battery is very important for the successful hybrid control operation. For the experimentation, a 1kW dc-dc converter with 500W fuel cell stack and 1kWh Li-polymer battery is implemented.

  • PDF

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF