• Title/Summary/Keyword: hybrid access

Search Result 343, Processing Time 0.026 seconds

A Study on the CLR Performance Improvement for VBR Traffic in the Wireless ATM Access Network (무선 ATM 가입자망에서 VBR 트래픽의 CLR 성능개선)

  • 이하철
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.713-720
    • /
    • 2004
  • In this paper we suggest error control scheme to improve CLR performance degradation on wireless ATM access networks which consist of access node and wireless channel. Based on the cell scale and hurst scale, traffic model of wireless ATM access network is analyzed. The CLR equation due to buffer overflow for wireless access node is derived for VBR traffic. the CLR equation due to random bit errors and burst errors for wireless channel is derived. Using the CLR equation for both access node and wireless channel, the CLR equation of wireless ATM access network is derived, and we evaluate the CLR performance on the wireless ATM access networks with conventional SR ARQ scheme and recommended error control scheme, that is, Type I Hybrid ARQ scheme. It is confirmed that CLR performance of the access networks with recommended error control schemes is superior to that of access networks with conventional error control scheme.

  • PDF

Hybrid Beamformer of CDMA Reverse Link in the Correlated SIMO Channel (CDMA 역방향 링크의 상관된 SIMO 채널을 위한 복합형 빔 성형 방식)

  • 최영관;김동구
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.81-86
    • /
    • 2004
  • Hybrid beamformer composed of Direction-of-Arrival (DOA) based scheme followed by Maximal Ratio Combining (MRC) is proposed to overcome the degradation due to inaccurate channel estimation caused by insufficient pilot power, which happens in conventional Single-Input Multiple-Output (SIMO) Code Division Multiple Access (CDMA) reverse link. The proposed scheme could provide more accurate channel estimation and interference reduction at the expense of diversity gam in the spatially correlated SIMO channel. As a result, hybrid scheme outperforms conventional MRC beamformer for six or more antennas in the channel environment, in which Angle-of-Spread (AOS) is within 30$^{\circ}$.

Terminal-Assisted Hybrid MAC Protocol for Differentiated QoS Guarantee in TDMA-Based Broadband Access Networks

  • Hong, Seung-Eun;Kang, Chung-Gu;Kwon, O-Hyung
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 2006
  • This paper presents a terminal-assisted frame-based packet reservation multiple access (TAF-PRMA) protocol, which optimizes random access control between heterogeneous traffic aiming at more efficient voice/data integrated services in dynamic reservation TDMA-based broadband access networks. In order to achieve a differentiated quality-of-service (QoS) guarantee for individual service plus maximal system resource utilization, TAF-PRMA independently controls the random access parameters such as the lengths of the access regions dedicated to respective service traffic and the corresponding permission probabilities, on a frame-by-frame basis. In addition, we have adopted a terminal-assisted random access mechanism where the voice terminal readjusts a global permission probability from the central controller in order to handle the 'fair access' issue resulting from distributed queuing problems inherent in the access network. Our extensive simulation results indicate that TAF-PRMA achieves significant improvements in terms of voice capacity, delay, and fairness over most of the existing medium access control (MAC) schemes for integrated services.

  • PDF

Layered Access Control Mechanism using Hybrid-based Method for SVC Media Transmission (SVC 미디어의 전송을 위한 하이브리드 방식의 계층별 접근제어 메커니즘)

  • Kwon, Hyeok-Chan;Kim, Sang-Choon
    • Convergence Security Journal
    • /
    • v.11 no.3
    • /
    • pp.47-54
    • /
    • 2011
  • To protect SVC(Scalable Video Coding) media, the encryption mechanism need to consider two fundamental issues; First, What is to be encrypted? Second, When encryption is performed with respect to compression? In this paper, we analyze the several encryption approaches with regard to the above issue. And we propose hybrid-based protection mechanism. This mechanism ensures the media scalability, layered access control and reuse protected content. In this experiment the proposed mechanism generates under 3% security overhead against standard scalable video coding.

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk;Joarder Jafor Sadiqu;Kanapathippillai Cumanan;Shaikh Enayet Ullah
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.213-225
    • /
    • 2023
  • Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

Enhancing GPU Performance by Efficient Hardware-Based and Hybrid L1 Data Cache Bypassing

  • Huangfu, Yijie;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • Recent GPUs have adopted cache memory to benefit general-purpose GPU (GPGPU) programs. However, unlike CPU programs, GPGPU programs typically have considerably less temporal/spatial locality. Moreover, the L1 data cache is used by many threads that access a data size typically considerably larger than the L1 cache, making it critical to bypass L1 data cache intelligently to enhance GPU cache performance. In this paper, we examine GPU cache access behavior and propose a simple hardware-based GPU cache bypassing method that can be applied to GPU applications without recompiling programs. Moreover, we introduce a hybrid method that integrates static profiling information and hardware-based bypassing to further enhance performance. Our experimental results reveal that hardware-based cache bypassing can boost performance for most benchmarks, and the hybrid method can achieve performance comparable to state-of-the-art compiler-based bypassing with considerably less profiling cost.

Performance Analysis of an Collision Resolution Algorithm in HFC-CATV Network (HFC-CATV 망에서의 충돌해결알고리즘에 대한 성능분석)

  • 이수연;안정희
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.3
    • /
    • pp.113-118
    • /
    • 2002
  • To provide interactive sonics in HFC(Hybrid Fiber Coax)-CATV network, there must be supported a MAC(Medium Access Control) protocol. It is wet known that collision can be occurred in the HFC upstream channel because it is shared by up to 500 users. Thus it needs the collision resolution algorithm. Consequently, this paper proposes the analysis mood to study stability of binary stack algorithm for adaptive collision resolution algorithm in HFC-CATV. Also, it compares a system throughput between IPP model and D-BMAP model.

  • PDF

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

A Conditional Clustering Scheme for Hybrid NOMA in Millimeter Wave Communication System

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.34-39
    • /
    • 2019
  • Millimeter-wave (mmWave) and Non-orthogonal multiple access (NOMA) are expected to be the major techniques that lead to the next generation wireless communication. NOMA provides a high spectrum efficiency by sharing of spatial resources among users in the same frequency band. Meanwhile, millimeter-wave gives a huge underutilized bandwidth at extremely high frequency band (EHF) which covers 30GHz to 300GHz. These techniques have been proven in several recent literatures to achieve high data rates. The combination of NOMA and millimeter-wave techniques further improves average sum capacities, as well as reduces the interference compared to conventional wireless communication systems. In this paper, we focus on hybrid NOMA system working in millimeter-wave frequency. We propose a clustering algorithm used for a hybrid NOMA scheme to optimize the usage of wireless resources. The proposed clustering algorithm adds several conditions in grouping users and defining clusters to increase the probability of the successful superposition decoding process. The performance of the proposed clustering algorithm is investigated in hybrid NOMA system and compared with the conventional orthogonal multiple access (OMA) scheme.