• Title/Summary/Keyword: humidity supply

Search Result 172, Processing Time 0.027 seconds

Experimental Study on Cooling Load Forecast Using Neural Networks (신경회로망을 이용한 일일 냉방부하 예측에 관한 실험적 연구)

  • Shin, Kwan-Woo;Lee, Youn-Seop;Kim, Yong-Tae;Choi, Byoung-Youn
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.61-64
    • /
    • 2001
  • The electric power load during the peak time in summer is strongly affected by cooling load. which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data approached to the actual data.

  • PDF

The Study on Cooling Load Forecast using Neural Networks (신경회로망을 이용한 냉방부하예측에 관한 연구)

  • 신관우;이윤섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

A Study on Daily Cooling Load Forecast Using Fuzzy Logic (퍼지 논리를 이용한 일일 냉방부하 예측에 관한 연구)

  • 신관우;이윤섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system are possible solutions to settle this problem. In this study. the method of estimating temperature and humidity to forecast the cooling load of ice-storage system is suggested, then the method of forecasting the cooling load using fuzzy logic is suggested by simulating that the cooling load is calculated using actual temperature and humidity. The forecast of the temperature, humidity and cooling load are simulated, and it is shown that the forecasted data approach to the actual data. Operating the ice-storage system by the forecast of cooling load with night electric power will improve the ice-storage system efficiency and reduce the peak electric power load during the summer season as a result.

Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor (양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향)

  • Jung, Yong;Kim, Du-Hyouk;Park, Chang-Hwan;Cho, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF

Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT (IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링)

  • Kim, Kyeong Heon;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

Auto plant control system by using Arduino

  • Chowdhury, Deb
    • Korean Journal of Artificial Intelligence
    • /
    • v.1 no.1
    • /
    • pp.4-6
    • /
    • 2013
  • In the era of information society, IT industry has been developed very much. New technology has made appearance in citizens' lives. IOT (Internet of Things) has grown up the most rapidly in IT industry. Kevin Ashiton, MIT specialist, said, "Loading of FRIS and other sensors shall build Internet of things." Internet of things is said to let things have sensor and communication module and to exchange information and communicate each other. In this study, Internet of things has been applied to flowerpot to build automatic flowerpot control system that turns fan ON and supplies water depending upon temperature and moisture. Users are difficult to cognize temperature and humidity of flower pot correctly. In this study, an experiment obtained correct value of temperature and humidity to build control system. At the performance test of flower pot, commands turned ON depending upon temperature and humidity. Control system should be added to control water supply quantity and time objectively according to servo motor control. Purpose of further study was to control flower pot by remote system in connection with smart phone application. An application control can make not only temperature and humidity statistics but also server depending upon users' needs to turn fan ON and take actions and to control flower pot.

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Humidity Distribution and Performance Variation of a PEMFC Multi Stack System According to the Direction of Anodic Supply (고분자 전해질 연료전지 멀티 스택 시스템의 수소극 흐름방향에 따른 습도분포 및 성능변화)

  • Lee, Yongtaek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this study the performance and humidity variation for 2 unit cells connected in series were experimentally measured. The relative flow direction of hydrogen and air was changed from parallel flow to counter flow. Internal humidity distribution was then measured by 5 embedded sensors on each channel. In all experimental conditions, the former unit cell showed a better performance and the gap is noted to be higher when counter flow is applied. The performance was noted to be higher at high humidification case in the parallel flow. However, in the counter flow, the difference of performance according to the humidification is negligible. Hydrogen and air are discharged from the PEMFC unsaturated with water vapor at parallel flow/low humidification condition, which explains lower performance of the PEMFC than other conditions. The humidities in hydrogen and air streams of counter flow were noted to increase rapidly even at low humidification condition and the consequential even hydration of membrane is the reason of higher performance.

Performance of Underground Air-to-Water Heat Pump with Direct Contact Heat Exchanger (지하공기-물 직접접촉식 열교환기를 구비한 히트펌프의 성능)

  • Kim, Y.H.;Kang, Y.K.;Sung, M.S.;Ryou, Y.S.;Kim, J.G.;Jang, J.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.1-172.1
    • /
    • 2010
  • In Jeju, underground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But greenhouse heating method by direct supply of underground air has several problems as like low temperature below $20^{\circ}C$ or high relative humidity over 90%. The underground air is inadequate in heating of crops such as mangos, oranges with the growing temperature over $20^{\circ}C$. Also if the relative humidity of greenhouse is kept with over 90%, diseases can strike almost of the crops. And also the ventilation loss becomes larger because the air pressure of inside greenhouse by direct supply of underground air is higher. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analyzed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air in this heat pump system were 46.5~31.4 kW, 34.9~20.9 kW respectively.

  • PDF