• 제목/요약/키워드: humidity correction

검색결과 45건 처리시간 0.021초

Assessment of microclimate conditions under artificial shades in a ginseng field

  • Lee, Kyu Jong;Lee, Byun-Woo;Kang, Je Yong;Lee, Dong Yun;Jang, Soo Won;Kim, Kwang Soo
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.90-96
    • /
    • 2016
  • Background: Knowledge on microclimate conditions under artificial shades in a ginseng field would facilitate climate-aware management of ginseng production. Methods: Weather data were measured under the shade and outside the shade at two fields located in Gochang-gun and Jeongeup-si, Korea, in 2011 and 2012 seasons to assess temperature and humidity conditions under the shade. An empirical approach was developed and validated for the estimation of leaf wetness duration (LWD) using weather measurements outside the shade as inputs to the model. Results: Air temperature and relative humidity were similar between under the shade and outside the shade. For example, temperature conditions favorable for ginseng growth, e.g., between $8^{\circ}C$ and $27^{\circ}C$, occurred slightly less frequently in hours during night times under the shade (91%) than outside (92%). Humidity conditions favorable for development of a foliar disease, e.g., relative humidity > 70%, occurred slightly more frequently under the shade (84%) than outside (82%). Effectiveness of correction schemes to an empirical LWD model differed by rainfall conditions for the estimation of LWD under the shade using weather measurements outside the shade as inputs to the model. During dew eligible days, a correction scheme to an empirical LWD model was slightly effective (10%) in reducing estimation errors under the shade. However, another correction approach during rainfall eligible days reduced errors of LWD estimation by 17%. Conclusion: Weather measurements outside the shade and LWD estimates derived from these measurements would be useful as inputs for decision support systems to predict ginseng growth and disease development.

특성 곡선 전치 기법을 이용한 가스 터어빈 엔진의 구성품 수준 습도 보정 (Component-Level Humidity Correction for Gas Turbine Engine Using Map Transposition Technique)

  • 이시우;정명균;임진식
    • 한국추진공학회지
    • /
    • 제4권3호
    • /
    • pp.83-94
    • /
    • 2000
  • 흡습에 따른 엔진 성능 변화량을 예측하기 위하여 모든 엔진 형식에 적용 가능한 체계적인 습도 보정 방법을 개발하였다. 우선 기존의 습도 보정 방법에 대한 적용 한계를 분명히 한 다음 흡습에 따른 엔진 구성품들의 성능 변화를 고려하고 엔진 제어 방식에 따라 구성품들간의 공력 재결합을 통하여 엔진 작동점의 변화를 계산하는 새로운 방법을 제시하였다. 단축 터보제트 엔진을 대상으로 두 가지 방법에 의한 습도 보정 내용을 비교 분석하여 기존의 방법은 회전수와 같은 물리적 성능 변수를 제어하는 경우에는 적용하기가 어렵다는 점을 밝혔다. 새로운 습도 보정 방법은 엔진 제어 방식이나 엔진 형식에 구애받지 않으나 기존의 방법은 엔진 제어 모드 및 엔진 형식에 따라 그 정확성이 크게 차이가 낱 수 있음을 확인하였다.

  • PDF

Spatial Interpolation of Meteorologic Variables in Vietnam using the Kriging Method

  • Nguyen, Xuan Thanh;Nguyen, Ba Tung;Do, Khac Phong;Bui, Quang Hung;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.134-147
    • /
    • 2015
  • This paper presents the applications of Kriging spatial interpolation methods for meteorologic variables, including temperature and relative humidity, in regions of Vietnam. Three types of interpolation methods are used, which are as follows: Ordinary Kriging, Universal Kriging, and Universal Kriging plus Digital Elevation model correction. The input meteorologic data was collected from 98 ground weather stations throughout Vietnam and the outputs were interpolated temperature and relative humidity gridded fields, along with their error maps. The experimental results showed that Universal Kriging plus the digital elevation model correction method outperformed the two other methods when applied to temperature. The interpolation effectiveness of Ordinary Kriging and Universal Kriging were almost the same when applied to both temperature and relative humidity.

크리이프에 의한 과실 포장입자의 층적 내구성 분석 (Stacking Durability Analysis of Fruit , Packaging Boxes by Creep)

  • 박종민;권순홍;권순구;김만수
    • Journal of Biosystems Engineering
    • /
    • 제21권2호
    • /
    • pp.191-197
    • /
    • 1996
  • Allowable stacking duration of the corrugated fiberboard boxes being widely used for packaging fruits and vegetables was analyzed by the creep behavior and the cumulative load correction factor for the boxes. The stacking boxes were assumed to be stored at a nearly constant temperature and relative humidity condition. When the stacking duration was short period, the stacking height determined by two methods showed a little difference between them, but almost no difference was shown as the stacking duration was longer. Allowable stacking duration was rapidly decreased with the increase of static load applied on the stacking boxes, and allowable stacking duration of Box A was estimated the longer than that of Box B. A model of allowable stacking duration for the corrugated fiberboard box was developed as a function of the stacking load and the ambient relative humidity.

  • PDF

보정곡선을 이용한 마이크로가스터빈 열병합발전시스템의 성능예측과 활용 (Performance Prediction of a Micro Gas Turbine Cogeneration System Using Correction Curves and its Applications)

  • 최병선;김정호;김민재;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.27-35
    • /
    • 2016
  • The purpose of this study is to develop a method to predict the performance and economics of a micro gas turbine cogeneration system using performance correction curves. The variables of correction curves are ambient temperature, ambient pressure, relative humidity and load fraction. All of the values of correction factors were expressed as relative values with respect to design values at the ISO conditions. Once the correction curves are obtained, system performance can be predicted relatively easily compared to a detailed performance analysis method through a simple multiplication of the correction factors of various variables at any operating conditions. The predicted results using the correction curve method were compared with those by the detailed and more complex performance analysis in a wide operating range, and its feasibility was confirmed. To illustrate the usability of the correction curve method, the results of an economic analysis of a cogeneration system considering varying operating ambient condition and load was presented.

습도를 고려한 절연유 시험 결과의 보정 방안 연구 (Correction Measures That Take Humidity into Account in Insulating Oil Test Measurement Results)

  • 김완수;노재필;강석구
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.541-546
    • /
    • 2024
  • Climate conditions, especially transport and storage, are a very important factor in the process of sampling and testing insulation oil in the field. The samples of insulating oil exposed to the atmosphere affect the dielectric strength, total acid number and moisture test value by oxygen and high humidity environment and may also affect the results according to the criteria specified in each test. Therefore, reliable test values for insulating oil testing require consideration of the atmospheric environment of the test site, including oxygen and humidity. In this paper, each test was conducted on insulating oil exposed to various time and humidity environments, and the effect of the atmospheric environment on the test results was analyzed by comparing and analyzing with the first insulating oil.

GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정 (Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction)

  • 이재희;이훈열;조성준;성낙훈;김정호
    • 대한원격탐사학회지
    • /
    • 제26권2호
    • /
    • pp.123-131
    • /
    • 2010
  • 이 논문에서는 지상용 SAR (GB-SAR) 시스템의 간섭기법을 이용하여 특정 산란체의 인위적 변위를 탐지하고 대기습도보정을 통하여 정확도를 향상시켰다. GB-SAR 자료는 중심주파수 5.3 GHz, 거리 해상도 25 cm, 방위해상도 $0.324^{\circ}$로 모든 편파(HH, VV, VH, HV)에 대해 얻어졌다. 삼각삼면반사체(triangular trihedral corner reflector)를 시스템 전방 160 m 지점에 위치시킨 후 인위적으로 0 - 40 mm의 변위를 주어 측정하였다. 그 결과, 모든 편파에서 실제 변위와 GB-SAR 시스템을 통한 측정 변위의 RMS 오차는 1.22 mm로 나타났으며, 실제변위 40 mm 일 때의 최대 측정오차는 HH편파에서 2.72 mm로 나타났다. 대기 중 습도에 대한 보정을 실시하였고 그 결과, RMS 오차는 0.52 mm로 줄어들었다. 이를 통해 GB-SAR 시스템은 밀리미터 이하의 정밀도가 요구되는 자연산란체나 인공구조물의 변위측정 및 안정성 평가 분야에 적용이 가능할 것으로 판단된다.

콘크리트 코어 압축강도의 각종 영향인자 보정 (Correction of Various Testing Factors Affecting Measured Compressive Strength of Concrete Core)

  • 박석균;최욱;오광진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.973-978
    • /
    • 2002
  • This study was performed to verify the effect of various testing conditions affecting measured compressive strength of concrete core and to compute the correction coefficients for it. Conditions of specimens affecting test results include size(diameter), height-diameter ratio, humidity of specimen, amount and arrangement of bar, core direction from structure and method of end preparation. In testing core strength of concrete, special cares should be taken on various testing conditions whose effects have been latent in conventional concrete.

  • PDF

연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발 (Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique)

  • 복혜정;김준수;김연희;조은주;김승범
    • 대기
    • /
    • 제34권1호
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구 (The Characteristics of the winter season window and indoor temperature due to the indoor plant)

  • 윤영일;조주영
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.