• Title/Summary/Keyword: humidity condition

Search Result 1,054, Processing Time 0.031 seconds

Effect of Inlet Humidity Condition at Cathode Side on Performance of a Polymer Exchange Membrane Fuel Cell (캐소드극 입구 가습 조건이 고분자 전해질 연료전지의 성능에 미치는 영향)

  • Moon, Cheor-Eon;Lee, Seo-Hee;Ko, Dong-Soo;Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3423-3428
    • /
    • 2007
  • This paper shows that inlet humidity condition at cathode side is one of dominant parameters affecting the performance of PEMFC. To investigate effects of inlet humidity condition, the performance measurements were conducted for a single PEMFC with two operating variables : cathode relative humidity and dry condition in anode dry. The fuel cell employed for the experiments is a unit PEMFC with a 25$Cm^2$, Nafion$^(R)$112 membrane. As a result of this study, the cell performance is getting higher by increasing inlet humidity condition at cathode side. The cell performance is different from each operating temperature an it has maximum30% higher than dry condition at 60$^{\circ}C$ operating temperature with 80% relative humidity.

  • PDF

The Application of Humidity Indicators for Environmental Measurement Apparatus of Preservation Facility (문화재 보존시설에서의 습도지시카드 적용성 연구)

  • Lim, Bo-A;Shin, Eun-jeong;Do, Min-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.47-61
    • /
    • 2009
  • Cultural heritages are affected by various environmental factors. Main factors are temperature, humidity, light and indoor air pollutants such as ozone, nitrogen oxides. Especially humidity condition is very important. Low humidity condition can cause contraction and high humidity condition can lead to growth of microorganism. This study is conducted to appraise an applicability of the Humidity Indicator which is one of the simple method for humidity control. The Humidity Indicator shows the humidity conditions through color change. Therefore, photometer was used to correctly measure the color change of Humidity Indicator. As a result of lab test, Humidity Indicators was stabilized after one hour from en exposure in a certain humidity condition and the indicators indicated clear correlations between color changes of Humidity Indicators and humidity conditions. Some Humidity Indicators which had been selected through the lab tests were applied to preservation facilities of cultural heritages and the indicators indicated closed correlations with humidity conditions in indoor of facilities.

  • PDF

A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape (실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구)

  • 주진희;방광자;설종호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

Properties of Water Permeability and Porosity of Cement Mortar Substrate Coated with Siliceous Slurry Coating under Exposure Enviorment (폭로환경하에서 규산질미분말혼합 시멘트계 도포방수재가 바탕모르터의 투수성과 세공구조에 미치는 영향)

  • 김형무;오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.175-182
    • /
    • 1996
  • This paper deals with the properties of water permeability and porosity of cement mortar substrate coated with siliceous slurry coating under the exposure environment. Conditions of exposure enviornment are four kinds of in constant temperature water and humidity box, in indoor and outdoor exposure. Coated mortar substrate was expected continually increase in water and humidity condition, but was not in dry condition. Watertightness effect of siliceous coating was better in the condition of humidity then the dry condition, and the pore volume was decreased in that condition.

  • PDF

Thermal Comfort Condition of Temperature and Humidity in Loess Interior Space

  • Kong, Sung-Hoon
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 2004
  • The study was carried out through measuring the temperature and humidity of the indoor/outdoor space and the distribution of interior thermal condition, and investigating the effect of loess materials on human body. The purpose of this study is to analyze the change of dry bulb temperature and relative humidity and correlation of thermal reaction of human body with ASHRAE (American Society of Heating, Refrigerating and Air-conditioning) comfort chart in the loess interior space. In the view point of biomedical sciences, loess interior space provides optimum thermal conditions for human thermal sensation.

  • PDF

Comparison Study of Air Temperature by Green Condition and Relative Humidity (녹지 조건에 따른 기온 및 상대습도의 비교연구)

  • 윤용한
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.3
    • /
    • pp.111-118
    • /
    • 2001
  • We observed air temperature and relative humidity in the green space why this research graspes effect of climate relax by coverage condition and height difference tree in green space of the 4ha scale. With this data, analyzed relationship of coverage and air temperature or relative humidity distribution, number of tree and climate relax by revolution analysis. In this result, higher zone formed barren area, lower zone did forest and surround grassland. Relative humidity have corresponding type of air temperature distribution. higher air temperature zone was lower humidity and lower zone was higher humidity. Coverage condition effect climate relax by increasing forest and grassland. and increasing number of tree effect climate relax no related hight of tree. This efficiency order of an arbor, subarbor.

  • PDF

EFFECT OF TEMPERATURE AND HUMIDITY ON THE LEAF COLOR AND CHEMICAL COMPONENTS DURING THE YELLOWING STAGE OF FLUE-CURING (황색종 연초 건조중 황변기 온습도차가 잎담배 색상 및 화학성분에 미치는 영향)

  • Hwang, Keon-Joong;Seok, Yeong-Seon;Lee, Han-Seok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.129-139
    • /
    • 1985
  • cent was carried out to study on the effect of temperature and humidity to chemical tobacco leaves during the yellowing stage. The results were follows : In the condition of high humidity and low temperature, yellowing time was delayed ; leaf color appeared lack clearness. In the higher temperature and the lower humidity during the yellowing stage : total sugar, reducing sugar and malic acid content were increased. Decomposition of nitrogenous components elevated in $38^{\circ}C$, 85%RH. Changes of total nitrogen content correlated with total curing time. Adecrease of linolenic acid with a corresponding increase of chlorogenic acid proceeded in the condition of low temperature and high humidity. In a view of tobacco quality by chemical components, the low temperature and high humidity during the yellowing stage decreased quality of tobacco leaves. It is considered to control of the proper condition of temperature and humidity during the yellowing.

  • PDF

Humidity Sensing Properties of 90[wt%] SnO2-10[wt%] TiO2 Ceramics (90[wt%] SnO2-10[wt%] TiO2 세라믹스의 습도감지특성)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1227-1232
    • /
    • 2014
  • The purpose of this paper is to establish the optimum fabricating condition of specimens using silk screen printing, and to develop humidity sensor which has good humidity sensing properties. The specimens are fabricated under the condition of 90[wt%] $SnO_2$-10[wt%] $TiO_2$, and their microstructure, crystalline structure, humidity sensing properties are examined. From the microstructure analyses, porosity is best at 700[$^{\circ}C$]. From the crystalline structure analyses, intensity of peak becomes strong according to increasing heat treatment temperature. From the humidity sensing properties analyses, an overall results of capacitance changes, linearity and hysteresis for the specimens is best at 600[$^{\circ}C$] and 700[$^{\circ}C$]. Capacitance of specimens increases according to decreasing measurement frequency, and to increasing relative humidity.

Humidity Variation by Green Space Calculation Method (녹지의 산출방법이 습도변화에 미치는 영향)

  • Yoon, Yong-Han;Park, Heon
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • For this study grasp quantitative humidity variation with planting stratification to various green space of calculation method, observed humidity distribution in the green space. with this data, coverage condition and humidity distribution, planting calculation method and humidity, planting stratification calculation method and humidity, analyzed by revolution analysis. In this result, as well as coverage condition, planting stratification effect humidity variation. increasing planting ratio (area) and planting volume (capacity) effect higher humidity. especially, if we compared between planting stratification calculation method and higher humidity, effect by a revolution coefficient and a correlation coefficient, effect relatively planting volume (capacity) higher than stratification ratio (area). today, in the index of higher humidity, planting calculation propose application of capacity method.

Theoretical and Experimental Considerations of Thermal Humidity Characteristics

  • Choi, Seok-Weon;Cho, Ju-Hyeong;Seo, Hee-Jun;Lee, Sang-Seol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Thermal humidity characteristics were considered theoretically and experimentally. A Simply well-fitted correlation of a saturated vapor pressure-temperature curve of water was introduced based on Antoine equation to make theoretical prediction of relative humidity according to temperature variation. Characteristics of dew point were also examined theoretically and its relation with temperature and humidity was evaluated. The exact mass of water vapor in a specified humidity and temperature condition was estimated to provide useful insight into the idea about how much amount of water corresponds to a specified humidity and temperature condition in a confined system. A simple but well-fitting model of dehumidification process was introduced to anticipate the trend of relative humidity level during GN2(gaseous nitrogen) purge process in a humidity chamber. Well-suitedness of this model was also verified by comparison with experimental data. The overall appearance and specification of two thermal humidity chambers were introduced which were used to perform various thermal humidity tests in order to yield useful data necessary to support validity of theoretical models.