• Title/Summary/Keyword: human-to-human (H2H)

Search Result 3,629, Processing Time 0.038 seconds

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Oxidative Stress by Arsenic Trioxide in Cultured Rat Cardiomyocytes, $H_9C_2$ Cells (배양 심근세포에서 저농도 삼산화비소에 의한 산화적 스트레스 발생)

  • Park Eun-Jung;Park Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.71-79
    • /
    • 2006
  • Epidemiologic studies have showed a close correlation between arsenic exposure and heart disease such as, cardiovascular problem, ischemic heart disease, infarction, atherosclerosis and hypertension in human. It may increase the mortality of high risk group with heart disease. Regarding the mechanism studies of heart failure, blood vessel, vascular smooth muscle cells and endothelial cells have long been focused as the primary targets in arsenic exposure but there are only a few studies on the cardiomyocytes. In this study, the generation of oxidative stress by low dose of arsenic trioxide was investigated in rat cardiomyocytes. By direct measurement of reactive oxygen species and fluorescent microscopic observation using fluorescent dye 2',7'-dichlorofluorescin diacetate, reactive oxygen species were found to be generated without cell death, where cells are treated with 0.1 ppm arsenic for 24 hours. With the induction of reactive oxygen species, GSH level was decreased by the same treatment. However, DNA damage did not seem to be serious by DAPI staining, while high dose of arsenic (2 ppm for 24 hrs) caused fragmentation of DNA. To identify the molecular biomarkers of low-dose arsenic exposure, gene expression was also investigated with whole genome microarray. As results, 9,022 genes were up-regulated including heme oxygenase-l and glutathione S-transrerase, which are well-known biomarkers of oxidative stress. 9,404 genes were down-regulated including endothelial type gp 91-phox gene by the treatment of 0.1 ppm arsenic for 24 hours. This means that biological responses of cardiomyocytes may be altered by ROS induced by low level arsenic without cell death, and this alteration may be detected clearly by molecular biomarkers such as heme oxygenase-1.

"Say Hello to Vietnam!": A Multimodal Analysis of British Travel Blogs

  • Thuy T.H. Tran
    • SUVANNABHUMI
    • /
    • v.15 no.2
    • /
    • pp.91-129
    • /
    • 2023
  • This paper reports the findings of a multimodal study conducted on 10 travel blog posts about Vietnam by seven British professional travel bloggers. The study takes a sociolinguistic view to tourism by seeing travel blogs as a source for linguistic and other semiotic materials while considering language as situated practice for the social construction of fundamental categories such as "human," "society," and "nation." It borrows concepts from Halliday's Systemic Functional Linguistics for interpersonal metafunction to develop an analytical framework to study how the co-occurrence of text and still images in these travel blog posts formulated the portrayal of Vietnam as a tourism destination and indicated the main sociolinguistic features of the blogs. The analysis of appreciation values and interactive qualities encoded in evaluative adjectives and still images show that Vietnam is generally portrayed as a country of identity and diversity. It provides tourists with positive experiences in terms of places of interest, food and local lifestyles and is cost-competitive. Strangerhood and authenticity are two outstanding sociolinguistic features exhibited in these travel blog posts. The findings of this study also underline the co-contribution of the linguistic sign, in this case evaluative adjectives, and the visual sign, in this case still images, as interpersonal meaning-making resources. To portray Vietnam, still images served as integral elements to evidence the credibility of verbal narrations. To unveil sociolinguistic characteristics of travel blogs, still images supported the linguistic realizations of authenticity and strangerhood on the posts, and in some case delivered an even stronger message than words. Not only does the study present a source of feedback from international travelers to tourism practice in Vietnam, but it also provides insights into multimodal analysis of tourism discourse which remains an under-researched area in Vietnam.

Protective Effects of Nypa fruticans Wurmb against Oxidative DNA Damage and UVB-induced DNA Damage

  • So-Yeon Han;Tae-Won Jang;Da-Yoon Lee;Seo-Yoon Park;Woo-Jin Oh;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.54-54
    • /
    • 2023
  • Nypa fruticans Wurmb (N. fruticans) is a plant that belongs to Araceae and N. fruticans is mainly found in tropical mangrove systems. The parts (leaves, stems, and roots) of N. fruticans are traditionally used for asthma, sore throat, and liver disease. N. fruticans contains flavonoids and polyphenols, which are substances that have inhibitory effects on cancer and oxidant. In previous studies, some pharmaceutical effects of N. fruticans on melanogenesis and inflammation have been reported. The present study is conducted to investigate the effect of the ethyl acetate fraction of N. fruticans (ENF) on oxidative DNA damage and UVB-induced DNA damage. DNA damage response (DDR) pathway is important in research on cancer, apoptosis, and so on. DDR pathways are considered a crucial factor affecting the alleviation of cellular damage. ENF could reduce oxidative DNA damage derived from reactive oxygen species by the Fenton reaction. Also, ENF reduced the intensity of intracellular ROS in the live cell image by DCFDA assay. UVB is known to cause skin and cellular damage, then finally contribute to causing the formation of tumors. As for the strategies of reducing DNA damage by UVB, inhibition of p53, H2AX, and Chk2 can be important indexes to protect the human body from DNA damage. As a result of confirming the protective effect of ENF for UVB damage, MMPs significantly decreased, and the expression of apoptosis-related factors tended to decrease. In conclusion, ENF can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage and UVB-induced DNA damage. These results are considered to be closely related to the protective effect against radicals based on catechin, epicatechin, and isoquercitrin contained in ENF. Based on these results, it is thought that additional mechanism studies for inhibiting cell damage are needed.

  • PDF

Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models

  • Gabriela Leite de Souza ;Camilla Christian Gomes Moura ;Anielle Christine Almeida Silva ;Juliane Zacour Marinho;Thaynara Rodrigues Silva ;Noelio Oliveira Dantas;Jessica Fernanda Sena Bonvicini ;Ana Paula Turrioni
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2020
  • Objectives: This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods: Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (-LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results: ZnO:0.7Ca and ZnO:1.0Ca at 10 ㎍/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and -LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and -LPS cells (p < 0.05). Conclusions: NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.

Studies on the Processing of Krill Sauce (크릴간장 제조(製造)에 관한 연구(硏究))

  • Lee, Eung-Ho;Cho, Soon-Yeong;Cha, Yong-Jun;Park, Hyang-Suk;Kwon, Chil-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.97-106
    • /
    • 1984
  • The Antarctic krill, Euphausia superba, is drawing attention over the world as the largest source of unutilized proteins in the ocean. For the use of krill as a human food, processing conditions of krill sauce by autolysis and/or commercial proteolytic enzyme digestion were examined. The krill was chopped and mixed with equal weight of water, and hydrolyzed by autolysis and/or commercial proteolytic enzyme digestion. The optimal conditions for hydrolysis of krill were $52.5^{\circ}C$, pH 7.0-7.5, 3 hours by autolysis, $52.5^{\circ}C$, pH 6.3, 3hours by bromelain (0.5 %) digestion, and $52.5^{\circ}C$, pH 7.0-7.5, 3 hours by commercial complex enzyme (5 %) digestion, respectively The maximum hydrolyzing rate of protein were 83.2 % by autolysis, 89.7 % by bromelain digestion, 92.7 % by commercial complex enzyme digestion. After krill meat hydrolyzed by autolysis at optimum condition, inactivated at $100^{\circ}C$ for 20 minutes and filtered with Buchner funnel. Two kinds of products were prepared with krill hydrolysate and preservatives: one contained 10 % of sodium chloride and 0.06 % of benzoic acid and the other 10 % of sodium chloride and 3 % of ethyl alcohol. These products were filled in the sterilized glass bottle and sealed. The pH, volatile basic nitrogen, amino nitrogen, color value (L, a and b values) and viable counts of bacteria were determined during storage at $37^{\circ}C$. The results showed that the products could be preserved in good condition during one month at $37^{\circ}C$. As a method to reduce the sodium level in krill sauce, it is convinced that sodium chloride could be replaced half in partially by potassium chloride. In the products prepared from krill by autolysis, bromelain or commercial complex enzyme digestion, hypoxanthine and 5'-IMP were abundant among the nucleotides and their related compounds as 15.3-20.4 ${\mu}mole/g$, dry solid, 2.2-2.5 ${\mu}mole/g$, dry solid, respectively. The abundant free amino acids were lysine, leucine, proline, alanine and valine. The contents of these amino acids were 67.4 %, 69.4 %, 69.8 % of the total free amino acids of each products. And TMAO, betaine and total creatinine were low in contents. The flavor of krill sauce prepared from krill by autolysis or enzyme digestion was not inferior to that of traditional Kerean soy sauce by sensory evaluation.

  • PDF

Antioxidative Effect and Component Analysis of Niaouli (Melaleuca quinquenervia) Leaf Extracts (니아울리 잎 추출물의 항산화 효과 및 성분 분석)

  • Kim, Moon Jin;Kim, Eun Jong;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.771-780
    • /
    • 2014
  • The antioxidative effects and component analysis of the Melaleuca quinquenervia leaf extracts were investigated. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from dried M. quinquenervia leaves. The DPPH (1,1-phenyl-2-picrylhydrazyl) scavenging activity ($FSC_{50}$) of ethyl acetate fraction ($10.05{\mu}g/mL$) of M. quinquenervia leaf extracts was similar to (+)-${\alpha}$-tocopherol($8.89{\mu}g/mL$) known as a typical antioxidant. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethyl acetate fraction ($1.61{\mu}g/mL$) and aglycone fraction ($1.07{\mu}g/mL$) of leaf extracts of M. quinquenervia on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay were similar to that of L-ascorbic acid ($1.50{\mu}g/mL$). The cellular protective effect of the extracts on the rose bengal sensitized photohemolysis of human erythrocytes was increased in a concentration dependant manner ($1{\sim}50{\mu}g/mL$). Especially, the cellular protective effects of Aglycone fraction (${\tau}_{50}=158.80min$) and 50% Ethanol extract (${\tau}_{50}=50.1{\pm}0.2min$) on the $^1O_2$-induced cellular damage of human cells were exhibited the higher than (+)-${\alpha}$-tocopherol (${\tau}_{50}=38.0min$). TLC and HPLC were used to analyse active components in the ethylacetate fraction of the extracts. Results showed that avicularin and quercetrin were active components of the extracts. These findings suggest that the M. quinquenervia leaf extracts can be applied to new cosmetics products as an effective antioxidant ingradient.

Antioxidative and Antiaging Effects of Persicaria hydropiper L. Extracts (여뀌 추출물의 항산화 및 항노화에 관한 연구)

  • Kim, Eun-Hee;Kim, Jung-Eun;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.293-300
    • /
    • 2009
  • In this study, we investigated the antioxidative activity and inhibitory effects on elastase and tyrosinase of Persicaria hydropiper L. extracts. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fractions of Persicaria hydropiper L. was $5.23\;{\mu}g/mL$. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some Persicaria hydropiper L. extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol - dependent chemiluminescence assay. The ROS scavenging activities ($OSC_{50}$) of ethyl acetate fractions of Persicaria hydropiper L. was $0.40\;{\mu}g/mL$. The protective effects of extract / fractions of Persicaria hydropiper L. on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Persicaria hydropiper L. extracts suppressed photohemolysis in a concentration dependent manner ($1\;{\sim}\;10\;{\mu}g/mL$). Inhibitory effects ($IC_{50}$) on tyrosinase of aglycone fraction of Persicaria hydropiper L. extracts was $8.90\;{\mu}g/mL$. Inhibitory effects ($IC_{50}$) on elastase of aglycone fraction of Persicaria hydropiper L. extracts was $2.37\;{\mu}g/mL$. These results indicate that extract / fractions of Persicaria hydropiper L. can function as antioxidants in biological systems, particularly skin exposed to UV radiation by anti-oxidative activity and protect cellular membranes against ROS. Persicaria hydropiper L. extract / fractions could be used as a new cosmeceutical for whitening and anti-wrinkle products.

Protection of Mice Against Pandemic H1N1 Influenza Virus Challenge After Immunization with Baculovirus-Expressed Stabilizing Peptide Fusion Hemagglutinin Protein

  • Yang, Eunji;Cho, Yonggeun;Choi, Jung-ah;Choi, YoungJoo;Park, Pil-Gu;Park, Eunsun;Lee, Choong Hwan;Lee, Hyeja;Kim, Jongsun;Lee, Jae Myun;Song, Manki
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.280-287
    • /
    • 2015
  • Current influenza vaccines are produced in embryonated chicken eggs. However, egg-based vaccines have various problems. To address these problems, recombinant protein vaccines have been developed as new vaccine candidates. Unfortunately, recombinant proteins frequently encounter aggregation and low stability during their biogenesis. It has been previously demonstrated that recombinantly expressed proteins can be greatly stabilized with high solubility by fusing stabilizing peptide (SP) derived from the C-terminal acidic tail of human synuclein (ATS). To investigate whether SP fusion proteins can induce protective immunity in mice, we produced influenza HA and SP fusion protein using a baculovirus expression system. In in vitro tests, SP-fused recombinant HA1 (SP-rHA1) was shown to be more stable than recombinant HA1 (rHA1). Mice were immunized intramuscularly with baculovirus-expressed rHA1 protein or SP-rHA1 protein ($2{\mu}g/mouse$) formulated with aluminum hydroxide. Antibody responses were determined by ELISA and hemagglutination inhibition assay. We observed that SP-rHA1 immunization elicited HA-specific antibody responses that were comparable to rHA1 immunization. These results indicate that fusion of SP to rHA1 does not negatively affect the immunogenicity of the vaccine candidate. Therefore, it is possible to apply SP fusion technology to develop stable recombinant protein vaccines with high solubility.

ROLE OF REACTIVE OXYGEN SPECIES IN MALE INFERTILITY

  • Sharma, Rakesh K.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.13-28
    • /
    • 2000
  • Human spermatozoa exhibit a capacity to generate ROS and initiate peroxidation of the unsaturated fatty acids in the sperm plasma membrane, which plays a key role in the etiology of male infertility. The short half-life and limited diffusion of these molecules is consistent with their physiologic role in key biological events such as acrosome reaction and hyperactivation. The intrinsic reactivity of these metabolites in peroxidative damage induced by ROS, particularly $H_2O_2$ and the superoxide anion, has been proposed as a major cause of defective sperm function in cases of male infertility. The number of antioxidants known to attack different stages of peroxidative damage is growing, and it will be of interest to compare alpha-tocopherol and ascorbic acid with these for their therapeutic potential in vitro and in vivo. Both spermatozoa and leukocytes generate ROS, although leukocytes produce much higher levels. The clinical significance of leukocyte presence in semen is controversial. Seminal plasma confers some protection against ROS damage because it contains enzymes that scavenge ROS, such as catalase and superoxide dismutase. A variety of defense mechanisms comprising a number of antioxidants can be employed to reduce or overcome oxidative stress caused by excessive ROS. Determination of male infertility etiology is important, as it will help us develop effective therapies to overcome excessive ROS generation. ROS can have both beneficial and detrimental effects on the spermatozoa and the balancing between the amounts of ROS produced and the amounts scavenged at any moment will determine whether a given sperm function will be promoted or jeopardized. Accurate assessment of ROS levels and, subsequently, OS is Vital, as this will help clinicians both elucidate the fertility status and identify the subgroups of patients that respond or do not respond to these therapeutic strategies. The overt commercial claims of antioxidant benefits and supplements for fertility purposes must be cautiously looked into, until proper multicentered clinical trials are studied. From the current data it appears that no Single adjuvant will be able to enhance the fertilizing capacity of sperm in infertile men, and a combination of the possible strategies that are not toxic at the dosage used would be a feasible approach.

  • PDF