• 제목/요약/키워드: human-to-human (H2H)

Search Result 3,629, Processing Time 0.034 seconds

Inhibitory Effect of Gamihwalhyeol-tang on Inflammatory Cytokine and NF-kB, AP-1 Activation in Human Synovial Cells (가미활혈탕이 Rheumatoid arthritis 관련 싸이토카인 및 전사인자에 미치는 영향)

  • Shin Sang Moon;Park Jong Ho;Yoo Dong Youl;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.165-176
    • /
    • 2003
  • The present study was carried out to examine the effects of Kami-hwal-hyeol-tang(KHHT) on the immune responses of synoviocyte cells prepared from the rheumatoid arthritis patients, and also on the collagen-mediated arthritis in mouse model. Several experiments were performed in vitro and in vivo to analyse the immunomodulatory effects of KHHT, and the major findings are summarized below: 1. KHHT did not show the cytotoxicity against mLFCs and hFLSs. 2. KHHT inhibited gene expression of IL-1β, IL-6, TNF-α, COX-2, NOS and GM-CSF in hFLSs. Furthermore, KHHT-treated hFLSs showed reduced production of pro-inflammatory cytokines such as IL-1β and IL-6 compared to the control cells. 3. KHHT treatment of hFLSs inhibited the binding activity of NF-kB and AP-1 to their consensus DNA sequences. 4. KHHT treatment(400 ㎍/㎖) of hFLSs significantly inhibited hFLSs proliferations compared to the control cells. 5. KHHT significantly reduced the production of ROS in hFLSs compared to the control cells. The present data show that KHHT plays an important role for the regulation of AP-1 and NF-kB gene expression. Also, it was found that KHHT has anti-arthritis effect. Further studies of KHHT in relation to RA therapeutics may provide important information to develop drugs to treat this disease.

A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

  • Hee, Oh-Seon;Lee, Bang-Wool;Quan, Yin-Hu;Kim, Hyun-Mi;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.107.1-107.1
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (6 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. (omitted)

  • PDF

The Relationship between F-18-FDG Uptake, Hexokinase Activity and Glut-1 Expression in Various Human Cancer Cell Lines (다양한 사람 종양세포주에서 F-18-FDG의 섭취와 Hexokinase 활성 및 Glut-1 발현과의 상관관계)

  • Kim, Bo-Kwang;Chung, June-Key;Lee, Yong-Jin;Choi, Yong-Woon;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2000
  • Purpose: To investigate the mechanisms related to F-18-FDG uptake by tumors, F-18-FDG accumulation was compared with glucose transporter-1 (Glut-1) expression and hexokinase activity in various human cancer cell lines. Materials and Methods: Human colon cancer (SNU-C2A, SNU-C4, SNU-C5), hepatocellular carcinoma (SNU-387, SNU-423, SNU-449), lung cancer (NCI-H522, NCI-H358, NCI-H1299), uterine cervical cancer (HeLa, HeLa 229, HeLa S3) and brain tumor (A172, Hs 683) cell lines were used. After 24 hr incubation of $5{\times}10^5$ cells, 37 kBq F-18-FDG was added and the uptake by cells at 10 min was measured using a gamma counter. Hexokinase activity was measured by continuous spectrophotometric rate determination. To measure mitochondrial hexokinase activity, mitochondrial fraction was separated by a high speed centrifuge. Immunohistochemical staining of Glut-1 was performed, and graded as 0, 1, 2, or 3 according to expression. Results: There was difference among F-18-FDG uptake, total and mitochondrial hexokinase activity, and Glut-1 expression with different cancer cell lines. The correlations of F-18-FDG with total hexokinase and mitochondrial hexokinase activity were low (r=0.27 and 0.26, respectively). Glut-1 expression showed a good correlation with F-18-FDG uptake (p=0.81, p=0.0015). Previously, we reported no correlation of F-18-FDG uptake with hexokinase activity in colon cancer cell lines. Thus, when colon cancer cells were excluded, F-18-FDG uptake showed higher correlation with total hexokinase and mitochondrial hexokinase activity (r=0.81, p=0.0027 and r=0.81, p=0.0049, respectively). Conclusion: Both Glut-1 expression and hexokinase activity were contributing factors related to F-18-FDG accumulation in human cancer cell lines. The relative contribution of Glut-1 expression and hexokinase activity, however, was different among different cancer cell types.

  • PDF

Inhibitory effect of Aralia elata ethanol extract against skin damage in UVB-exposed human keratinocytes and human dermal fibroblasts (두릅순 에탄올 추출물의 인간유래 피부각질형성세포와 피부섬유아세포에서의 자외선에 의한 광노화 억제효과)

  • Yang, Jiwon;Kwak, Chungshil
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.429-436
    • /
    • 2016
  • Purpose: Solar ultraviolet (UV) radiation causes inflammation and matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging such as wrinkle formation, dryness, and sagging. Activation of MMP is influenced by various molecules such as reactive oxygen species (ROS), proinflammatory cytokines, and transient receptor potential vanilloid type (TRPV)-1, which are increased in UV-irradiated skin cells. Aralia elata (AE) ethanolic extract was reported to inhibit ROS generation caused by UVB-irradiation in keratinocytes. In this study, we investigated the photoprotective effect of AE ethanolic extract on UVB-irradiated human keratinocytes (HaCaT) and human dermal fibroblasts (HDF). Methods: AE was freeze-dried, extracted in 70% ethanol, and concentrated. Skin cells were treated with AE extract for 24 h and then exposed to UVB ($55mJ/cm^2$). After 48 h of incubation, proinflammatory cytokines, MMP-1, type-1 procollagen, and TRPV-1 levels were measured by ELISA or Western blotting. Results: Treatment with AE extract ($100{\mu}g/mL$) significantly inhibited UVB-induced IL-6, IL-8, and $PGE_2$ production in HaCaT by 25.6%, 5.3%, and 70.2%, respectively, and also inhibited elevation of MMP-1 and TRPV-1 caused by UVB irradiation by 20.0% and 41.9%, respectively (p < 0.05). In HDF, AE extract treatment significantly inhibited both elevation of MMP-1 and reduction of type-1 procollagen caused by UVB irradiation (p < 0.05). In addition, type-1 procollagen was elevated by AE extract treatment in normal HDFs (p < 0.05). Conclusion: AE 70% ethanol extract has photoprotective ability via reduction of proinflammatory mediators, TRPV-1 and MMP-1 production, and elevation of collagen synthesis. Our findings suggest that AE extract might be a good natural material to protect against UVB-induced premature skin aging.

Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja;Lee, Yun-Kyung;Lee, Eun-Hee;Park, Jeong-Ju;Chung, Sung-Kee;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.657-665
    • /
    • 2006
  • We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas (배출가스의 질소산화물과 이산화황 동시 저감 기술)

  • Park, Hyun-Woo;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.607-618
    • /
    • 2017
  • Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

Anti-microbial and anti-inflammatory effects of Cheonwangbosim-dan against Helicobacter pylori-induced gastritis

  • Park, Hee-Seon;Jeong, Hye-Yun;Kim, Young-Suk;Seo, Chang-Seob;Ha, Hyekyung;Kwon, Hyo-Jung
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2020
  • Background: There are various Helicobacter species colonizing the stomachs of animals. Although Helicobacter species usually cause asymptomatic infection in the hosts, clinical signs can occur due to gastritis associated with Helicobacter in animals. Among them, Helicobacter pylori is strongly associated with chronic gastritis, gastric ulcers, and gastric cancers. As the standard therapies used to treat H. pylori have proven insufficient, alternative options are needed to prevent and eradicate the diseases associated with this bacterium. Cheonwangbosim-dan (CBD), a traditional herbal formula that is popular in East Asia, has been commonly used for arterial or auricular flutter, neurosis, insomnia, and cardiac malfunction-induced disease. Objectives: The present study investigated the antimicrobial effect of CBD on H. pylori-infected human gastric carcinoma AGS cells and model mice. Methods: AGS cells were infected with H. pylori and treated with a variety of concentrations of CBD or antibiotics. Mice were given 3 oral inoculations with H. pylori and then dosed with CBD (100 or 500 mg/kg) for 4 weeks or with standard antibiotics for 1 week. One week after the last treatment, gastric samples were collected and examined by histopathological analysis, real-time quantitative polymerase chain reaction, and immunoblotting. Results: Our results showed that CBD treatment of AGS cells significantly reduced the H. pylori-induced elevations of interleukin-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In the animal model, CBD treatment inhibited the colonization of H. pylori and the levels of malondialdehyde, inflammation, proinflammatory cytokines, iNOS, and COX-2 in gastric tissues. CBD also decreased the phosphorylation levels of p38 mitogen-activated protein kinase family. Conclusions: This study suggests that CBD might be a prospective candidate for treating H. pylori-induced gastric injury.

Cloning and Characterization of a Bile Salt Hydrolase from Enterococcus faecalis Strain Isolated from Healthy Elderly Volunteers (사람 분변에서 분리한 Enterococcusfaecalis가 생성하는 BileSaltHydrolase의 특징)

  • Eom, Seok-Jin;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Bile salt hydrolase (BSH, EC 3.5.1.24) activity, which cleaves amide bond between carboxyl group (bile acid) and amino group (glycine or taurine), is commonly detected in gut-associated species of human and animal. During the screening of BSH active strains from the fecal samples of elderly human volunteers, strain CU30-2 was isolated on the basis of the highly active BSH producing activity. A bsh gene of the isolate was cloned into the pET22b expression vector and overexpressed in Escherichia coli BL21 (DE3) Gold by induction with 1mM IPTG. The overexpressed BSH enzyme with 6x His-tag was purified with apparent homogeneity using a $Ni^+$-NTA agarose column and characterized. The BSH enzyme of E. faecalis CU30-2 exhibited approximately 50 times higher activity against glycol-conjugated bile salts than tauro-conjugated bile salts having the highest activity against glycocholic acid. Considering the prevalence of E. faecalis strains in the human GI tract and glycol-conjugates dominated bile acid composition of human bile, further study is needed to investigate the impact of the BSH activity exerted by E. faecalis strains to the host as well as to the BSH producing strains.

  • PDF

Establishment of High Throughput Screening System Using Human Umbilical Cord-derived Mesenchymal Stem Cells

  • Park, Eu-Gene;Cho, Tae-Jun;Oh, Keun-Hee;Kwon, Soon-Keun;Lee, Dong-Sup;Park, Seung-Bum;Cho, Jae-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.43-50
    • /
    • 2012
  • The use of high throughput screening (HTS) in drug development is principally for the selection new drug candidates or screening of chemical toxicants. This system minimizes the experimental environment and allows for the screening of candidates at the same time. Umbilical cord-derived stem cells have some of the characteristics of fetal stem cell and have several advantages such as the ease with which they can be obtained and lack of ethical issues. To establish a HTS system, optimized conditions that mimic typical cell culture conditions in a minimal space such as 96 well plates are needed for stem cell growth. We have thus established a novel HTS system using human umbilical cord derived-mesenchymal stem cells (hUC-MSCs). To determine the optimal cell number, hUC-MSCs were serially diluted and seeded at 750, 500, 200 and 100 cells per well on 96 well plates. The maintenance efficiencies of these dilutions were compared for 3, 7, 9, and 14 days. The fetal bovine serum (FBS) concentration (20, 10, 5 and 1%) and the cell numbers (750, 500 and 200 cells/well) were compared for 3, 5 and 7 days. In addition, we evaluated the optimal conditions for cell cycle block. These four independent optimization experiments were conducted using an MTT assay. In the results, the optimal conditions for a HTS system using hUC-MSCs were determined to be 300 cell/well cultured for 8 days with 1 or 5% FBS. In addition, we demonstrated that the optimal conditions for a cell cycle block in this culture system are 48 hours in the absence of FBS. In addition, we selected four types of novel small molecule candidates using our HTS system which demonstrates the feasibility if using hUC-MSCs for this type of screen. Moreover, the four candidate compounds can be tested for stem cell research application.

Purification, crystallization and X-ray diffraction of heparan sulfate bounded human RAGE

  • Park, Jun bae;Yoo, Youngki;Ong, Belinda Xiang Yu;Kim, Juyeon;Cho, Hyun-Soo
    • Biodesign
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2017
  • Receptor for advanced glycation end products (RAGE) is one of the single transmembrane domain containing receptors and causes various inflammatory diseases including diabetes and atherosclerosis. RAGE extracellular domain has three consecutive IgG-like domains (V-C1-C2 domain) which interact with various soluble ligands including heparan sulfate or HMGB1. Studies have shown that each ligand induces different oligomeric forms of RAGE which results in a ligand-specific signal transduction. The structure of mouse RAGE bound to heparan sulfate has been previously determined but the electron density map of heparan sulfate was too ambiguous that the exact position of heparin sulfate could not be defined. Furthermore, the complex structure of human RAGE and heparin sulfate still remains elusive. Therefore, to determine the structure, human RAGE was overexpressed using bacterial expression system and crystallized using the sitting drop method in the condition of 0.1 M sodium acetate trihydrate pH 4.6, 8 % (w/v) polyethylene glycol 4,000 at 290 K. The crystal diffracted to 3.6 Å resolution and the space group is C121 with unit cell parameters a= 206.04 Å, b= 68.64 Å, c= 98.73 Å, α= 90.00°, β= 90.62°, γ= 90.00°.