• 제목/요약/키워드: human-induced model

검색결과 643건 처리시간 0.025초

60Hz ELF자계에 의한 인체내부 유도 전류밀도 해석 (Analysis on Induced Current Density inside Human Body by 60 Hz ELF Magnetic Fields)

  • 민석원;송기현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.581-583
    • /
    • 2004
  • This paper analysed the induced current density characteristics inside human body by extremely low frequency magnetic fields according to varying conductivities of human model. Human model was composed of several organs and other parts of 곳 human body, whose shapes were spheroids or cylinders. Organs taken into account were the brain, heart, lungs, liver and intestines. Applying the boundary element method to the human model, effects of the organ conductivity difference to the induced current distribution were estimated.

  • PDF

60Hz ELF 자계에 의한 인체내부 유도 전류밀도 해석 (Analysis on Induced Current Density Inside Human Body by 60 Hz ELF Magnetic Fields)

  • 민석원;송기현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권2호
    • /
    • pp.76-81
    • /
    • 2006
  • This paper analysed the characteristics of current density induced inside human body by 60 Hz extremely low frequency magnetic fields according to varying conductivities of human model. Human model was composed of several organs and other parts, whose shapes were expressed by spheroids or cylinders. Organs such as the brain, heart, lungs, liver and intestines were taken into account. Applying the boundary element method to the human model, we estimated effects on the induced current distribution due to differences of the organ conductivity and shape. We find organ conductivity influences most and a cross section area and a position of organ also gives effects.

Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

  • Keum, Dong In;Pi, Long-Quan;Hwang, Sungjoo Tommy;Lee, Won-Soo
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.169-175
    • /
    • 2016
  • Background: Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods: We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results: 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion: Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.

고속철도내 자기장에 의한 인체 모델에서의 유도 전류 계산 (Induced Current Calculation in a Human Body Model due to Magnetic field in High Speed Railway)

  • 한인수;이태형;박춘수;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.208-213
    • /
    • 2008
  • In recent society, the quality of human life has improved due to the use of electric appliances and the high powered electrical equipments. However, lots of electric appliances and equipments generate the electromagnetic field hazard. Many studies have been made about the wrong behavior of machines due to electromagnetic fields, the interferences in communication equipments, the possibility of the electromagnetic field hazard in human body, etc. There exist international standards about the RF equipments (ex. mobile phone, antenna, etc.). But, many researchers involved in power frequency electric and magnetic field only propose the prudential avoidance. In this paper, induced currents in a human body model due to magnetic fields in high speed railway are calculated by two dimensional impedance method. Power frequency(60Hz) magnetic fields are calculated and induced currents are simulated by Faraday's law. Induced currents are simulated with induced voltage, human body model impedances due to Ohm's law, magnetic fields derived from Biot-Savart's law and Transmission Line Method in high speed railway.

  • PDF

RFID 장비에 의한 인체 유도 전류의 등가 안테나 모형 연구 (Research on an Equivalent Antenna Model for Induced Human Body Current by RFID Equipments)

  • 이종건;변진규;최형도;천창율;이병제;정용식
    • 한국전자파학회논문지
    • /
    • 제19권7호
    • /
    • pp.727-732
    • /
    • 2008
  • 최근 몇 년간 전자파 관련 장비 사용이 증가함에 따라 전자파의 인체 영향 또한 관심이 증가하고 있으며, 또한 이러한 영향을 구체적으로 파악하기 위한 연구가 진행 중이다. 이에 대한 일환으로 이동 통신 단말기에 의한 전자파 인체 흡수율(SAR)에 의한 국내외 표준 제정에 관한 연구가 활발히 진행되었다. 그러나 인체에 대한 침투력이 상대적으로 큰 단파 대역(HF: High Frequency)에 의한 인체 유도 전류에 대한 표준은 연구가 미흡한 편이다. 특히 교통 카드와 도서관 등에서 사용되는 RFID 장비의 활발한 도입으로 RFID 장비의 방출 전자파에 의한 인체 영향 연구가 절실하다. 본 논문은 단파 대역인 13.56 MHz에서 동작하는 RFID 장비에 의하여 인체에 유도되는 전류와 유사한 유도 전류값을 갖는 실린더형 인체 등가 안테나 모형을 설계 및 제작함으로써 RFID 장비의 방출 전자파에 의한 인체의 영향을 양적으로 파악하고, 인체와 인체 등가 모형에 유기되는 유도 전류의 유사성을 확인하였다.

단파(HF) 대역 RFID 리더 안테나에 의한 인체 유도 전류의 등가 안테나 모형 연구 (Research on An Equivalent Antenna Model for Induced Human Body Current by RFID Reader Antenna of HF Band)

  • 이종건;변진규;최형도;천창율;이병제;정용식
    • 한국전자파학회논문지
    • /
    • 제20권6호
    • /
    • pp.503-508
    • /
    • 2009
  • 전자파의 사용 범위가 확대되고 각 분야에서의 활용도가 높아짐에 따라 인체에 대한 영향이 증가하여 이에 대한 많은 연구가 이루어지고 있다. 하지만 인체의 영향 연구나 인체 보호 기준이 단말기에 의한 영향은 SAR(Specific Absorption Ratio)의 연구 및 표준 활동이 활발하나 단파(high frequency) 대역에 의한 인체 유도 전류에 대한 연구는 미흡한 편이다. 본 연구에서는 근거리장에서 단파 대역 RFID 리더 안테나에 의한 인체에 유도되는 전류를 측정하고 이를 등가화 할 수 있는 수직 교차 루프 형태의 인체 등가 모형을 제시하여 인체의 유도 전류량과 비교하였다.

Development of an easy-to-handle murine model for the characterization of radiation-induced gross and molecular changes in skin

  • Chang, Hsien Pin;Cho, Jae Ho;Lee, Won Jai;Roh, Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제45권5호
    • /
    • pp.403-410
    • /
    • 2018
  • Background Radiation-induced skin injury is a dose-limiting complication of radiotherapy. To investigate this problem and to develop a framework for making decisions on treatment and dose prescription, a murine model of radiation-induced skin injury was developed. Methods The dorsal skin of the mice was isolated, and irradiation was applied at single doses of 15, 30, and 50 Gy. The mice were followed for 12 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy samples were obtained and subjected to a histological analysis, immunostaining against transforming growth factor beta (TGF-${\beta}$), and Western blotting with Wnt-3 and ${\beta}$-catenin. Increases in the levels of TGF-${\beta}$, Wnt, and ${\beta}$-catenin were detected after irradiation. Results All tested radiation doses caused progressive dermal thickening and fibrosis. The cause of this process, however, may not be radiation alone, as the natural course of wound healing may elicit a similar response. The latent appearance of molecular and histological markers that induce fibrosis in the 15 Gy group without causing apparent gross skin injuries indicates that 15 Gy is an appropriate dose for characterizing the effects of chronic irradiation alone. Thus, this model best mimics the patterns of injury that occur in human subjects. Conclusions This animal model can be used to elucidate the gross and molecular changes that occur in radiation-induced skin injury and provides an effective platform for studying this adverse effect without complicating the process of wound healing.

자계에 의한 구형 인체모델 내부의 유도전류밀도 분포 해석 (Analysis of Induced-Currant density Distribution in Spherical Human Model)

  • 여희창;김부규;박상호;강대하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.458-458
    • /
    • 2003
  • In this study the induced-current density distributions in spherical human model by the magnetic field from electric power lines were analysed with visualization and also the effects of phase difference between components of magneto field were investigated.

  • PDF

Measurements of pedestrian's ioad using smartphones

  • Pan, Ziye;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.771-777
    • /
    • 2017
  • The applications of smartphones or other portable smart devices have dramatically changed people's lifestyle. Researchers have been investigating useage of smartphones for structural health monitoring, earthquake monitoring, vibration measurement and human posture recognition. Their results indicate a great potential of smartphones for measuring pedestrian-induced loads like walking, jumping and bouncing. Smartphone can catch the device's motion trail, which provides with a new method for pedestrain load measurement. Therefore, this study carried out a series of experiments to verify the application of the smartphone for measuring human-induced load. Shaking table tests were first conducted in order to compare the smartphones' measurements with the real input signals in both time and frequency domains. It is found that selected smartphones have a satisfied accuracy when measuring harmonic signals of low frequencies. Then, motion capture technology in conjunction with force plates were adopted in the second-stage experiment. The smartphone is used to record the acceleration of center-of-mass of a person. The human-induced loads are then reconstructed by a biomechanical model. Experimental results demonstrate that the loads measured by smartphone are good for bouncing and jumping, and reasonable for walking.

Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure

  • Park, Young-Min;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.450-459
    • /
    • 2015
  • In this paper, the safety distances and maximum permissible power (MPP) of resonant wireless power transfer systems are defined and derived with regard to human exposure to electromagnetic field (EMF). The definition is based on the calculated induced current density and electric field in the standard human model located between the transmitting and receiving coil. In order to avoid the adverse health effects such as stimulation of nerve tissues, the induced current and electric field must not exceed the basic restriction values specified in EMF safety guidelines. The different combinations of diameters of the coils and the distance between the two coils are investigated and their effects are analyzed. Two versions of EMF safety guidelines (ICNIRP 1998 and ICNIRP 2010) are used as bases for safety distance calculation and the difference between the two guidelines are discussed.