• 제목/요약/키워드: human-friendly robot

검색결과 87건 처리시간 0.024초

사족 보행로봇의 원격제어 구현 (The Implementation of Remote Control for a Quadruped Robot)

  • 공정식;이인구;이보희
    • 한국정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.300-308
    • /
    • 2002
  • 본 논문은 네트웍을 이용하여 원격 제어가 가능한 사족보행로봇의 구현에 대하여 다루고 있다. 로봇이 평탄하지 않은 지면에서 작업하거나 인간 친화적인 요소를 부여하기 위해서는 인간이나 곤충과 같이 다리를 가지는 보행이 필수적이다. 제작된 사족 보행로봇은 장착된 센서와 구동부를 이용하여 기본적인 동작을 수행하는 동시에 유선알고리즘을 이용해 만들어진 진보된 걸음새를 가지고 있다. 또한 웹브라우저를 이용하여 로봇의 명령을 만들고 현재의 상태를 모니터링 하는 등의 원격 동작을 수행하기 위해 네트웍을 통해 제어를 수행할 수 있게 하였다. 본 논문에서는 제작된 로봇의 기구적인 해석 결과를 다루었고 해석된 결과를 모의 실험과 더불어 실제 구현하여 제시된 방법의 유용성을 제시하였다.

Intelligent Emotional Interface for Personal Robot and Its Application to a Humanoid Robot, AMIET

  • Seo, Yong-Ho;Jeong, Il-Woong;Jung, Hye-Won;Yang, Hyun-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1764-1768
    • /
    • 2004
  • In the near future, robots will be used for the personal use. To provide useful services to humans, it will be necessary for robots to understand human intentions. Consequently, the development of emotional interfaces for robots is an important expansion of human-robot interactions. We designed and developed an intelligent emotional interface for the robot, and applied the interfaces to our humanoid robot, AMIET. Subsequent human-robot interaction demonstrated that our intelligent emotional interface is very intuitive and friendly

  • PDF

과학관에서의 대중 시연을 통한 인간크기 이족보행 휴머노이드 로봇의 평가 연구 (Evaluation Study of a Human-sized Bipedal Humanoid Robot Through a Public Demonstration in a Science Museum)

  • 안태범;강이석
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.849-857
    • /
    • 2015
  • Although human-sized bipedal humanoid robots have been developed as the ideal form of human-friendly robots, studies of humanoid robots from the user perspective and of actual interaction between humanoid robots and the public in daily environments are few. This paper presents a long-term public demonstration that encouraged interaction between a humanoid robot and unspecified individuals. We have collected a significant amount of subjective evaluation data from the public by performing a storytelling demonstration that enhanced people's empathy towards the robot. The evaluation model consists of the robot's human friendliness, which involves its impression on humans, interaction with humans, and imitation of human motions and the robot's human appearance which involves gender, age, height, and body type. This study shows that there is no significant difference in human-friendliness between gender groups (male and female), while there is a significant difference between age groups (children and adults). In human appearance, it appears that there is no significant difference between either gender groups or age groups, except for the case of the robot's height.

Human-Friendly Interfaces of a Robot Manipulator Control System for Handicapped Person

  • Lim, Soo-chul;Lee, Kyoobin;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.84.1-84
    • /
    • 2002
  • A Human-Robot-Interface(HRI) for the disabled Person is developed. $\textbullet$ HRI consists of the laser pointer '||'&'||' USB camera and pressure sensor. $\textbullet$ HRI makes three degree of freedom. $\textbullet$ Three robot position control method with the Interface is presented. $\textbullet$ Experimental results show that user control the 6 DOF robot with the interface and control method.

  • PDF

Soft-Remote-Control System based on EMG Signals for the Intelligent Sweet Home

  • Song, Jae-Hoon;Han, Jeong-Su;Pak, Ji-Woo;Kim, Dae-Jin;Jung, Jin-Woo;Bien, Z. Zenn;Lee, He-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1163-1168
    • /
    • 2005
  • This paper proposes a soft-remote-control (soft-remocon) system based on EMG signals for the Intelligent Sweet Home. The proposed system is applied to Intelligent Sweet Home which was developed to help the independence living of the elderly and physically handicapped individuals. The goal of proposed system is to control home-installed electronic devices such as TV, air-conditioner, curtain and lamp in Intelligent Sweet Home using EMG signals. Features such as VAR and DAMV having good separability performance are selected for pattern classification. FMMNN is adopted as a pattern classifier. Classification results are allowed to a developed remote control module and then corresponding infrared pulses can operate home-installed electronic devices. We concluded that EMG as an input interface for home-installed electronic devices in Intelligent Sweet Home.

  • PDF

지능형 표정로봇, 휴머노이드 ICHR (Intelligent Countenance Robot, Humanoid ICHR)

  • 변상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.175-180
    • /
    • 2006
  • In this paper, we develope a type of humanoid robot which can express its emotion against human actions. To interact with human, the developed robot has several abilities to express its emotion, which are verbal communication with human through voice/image recognition, motion tracking, and facial expression using fourteen Servo Motors. The proposed humanoid robot system consists of a control board designed with AVR90S8535 to control servor motors, a framework equipped with fourteen server motors and two CCD cameras, a personal computer to monitor its operations. The results of this research illustrate that our intelligent emotional humanoid robot is very intuitive and friendly so human can interact with the robot very easily.

  • PDF

A Human Robot Interactive System 'RoJi '

  • Yoon, Joongsun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1900-1908
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. Robotic aids, such as robotic canes, require cooperation between human and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

Development of a Bio-mimetic Entertainment Robot with Autonomous Feeding Functionality

  • Cho, Ik-Jin;Choi, Byoung-Jun;Jeong, Kil-Woong;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1525-1529
    • /
    • 2004
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, bio-mimetic robot and humanoid robot. Interest in these robots are increasing since the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable for home or personal environment. The more bio-mimetic robots resemble living creature, the more human feels familiarity. People feel close friendship not only when they feed a pet, but also when they watch a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on a battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new bio-mimetic entertainment robot with autonomous feeding functionality, called ELIRO-1(Eating LIzard RObot version 1). The ELIRO-1 is able to find a food (a small battery), feed by itself and evacuate. We describe the design concept of the autonomous feeding mechanism of the ELIRO-1, characteristics of sub-parts of the manufactured mechanism and the control system.

  • PDF

감성 로봇 "라이"의 감성적 동작 구현 (Human-Sensitive Mot ion Interpretation of Emotional Robot "Rai")

  • 김연훈;이동연;김병수;곽윤근
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 춘계학술대회 논문집
    • /
    • pp.327-332
    • /
    • 2002
  • We made a human-sensitive motion interpretation to the interactive emotional robot, "Rai" of which the mechanism design was carried out and completed. Kinematic system of this emotional robot mainly consists of a body and a head. The body contains the total control units , the communicat ion modules and also two wheels and motors for main driving which make kinds of motions 1 ike the inverted pendulum. This robot system is designed under the concept on the human-friendly mot ion and react ion wi th humans around living room and office environments. Therefore, various scenarios are constructed in order to enable the emotional expressions at those places. Especially, we interpreted technically-possible motions while accommodating to the scenarios constructed. And we performed some experiments to make sere of the possibility of the motion interpretation.

  • PDF

보행자의 영상정보를 이용한 인간추종 이동로봇의 위치 개선 (Position Improvement of a Human-Following Mobile Robot Using Image Information of Walking Human)

  • 진태석;이동희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.398-405
    • /
    • 2005
  • The intelligent robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robots need to recognize their position and posture in known environment as well as unknown environment. Moreover, it is necessary for their localization to occur naturally. It is desirable for a robot to estimate of his position by solving uncertainty for mobile robot navigation, as one of the best important problems. In this paper, we describe a method for the localization of a mobile robot using image information of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot's position. Also, the control method is proposed to estimate position and direction between the walking human and the mobile robot, and the Kalman filter scheme is used for the estimation of the mobile robot localization. And its performance is verified by the computer simulation and the experiment.