• Title/Summary/Keyword: human umbilical vein endothelial cell line

Search Result 7, Processing Time 0.028 seconds

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

Lyso-globotriaosylsphingosine induces endothelial dysfunction via autophagy-dependent regulation of necroptosis

  • Ae-Rang Hwang;Seonghee Park;Chang-Hoon Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.231-240
    • /
    • 2023
  • Fabry disease is a lysosomal storage disorder characterized by the lysosomal accumulations of glycosphingolipids in a variety of cytotypes, which include endothelial cells. The disease is inherited and originates from an error in glycosphingolipid catabolism caused by insufficient α-galactosidase A activity, which causes uncontrolled progressive storage of intracellular globotriaosylceramide (Gb3) in the vasculature and extracellular accumulation of lyso-Gb3 (a deacetylated soluble form of Gb3). Necrosis can lead to inflammation, which exacerbates necrosis and creates a positive feedback loop that triggers necroinflammation. However, the role played by necroptosis, a form of programmed necrotic cell death, in the cell-to-cell inflammatory reaction between epithelial and endothelial cells is unclear. Thus, the present study was undertaken to determine whether lyso-Gb3 induces necroptosis and whether necroptosis inhibition protects endothelial dysfunction against lyso-Gb3 inflamed retinal pigment epithelial cells. We found lyso-Gb3 induced necroptosis of a retinal pigment epithelial cell line (ARPE-19) in an autophagy-dependent manner and that conditioned media (CM) from ARPE-19 cells treated with lyso-Gb3 induced the necroptosis, inflammation, and senescence of human umbilical vein endothelial cells. In addition, a pharmacological study showed CM from lyso-Gb3 treated ARPE-19 cells induced endothelial necroptosis, inflammation, and senescence were significantly inhibited by an autophagy inhibitor (3-MA) and by two necroptosis inhibitors (necrostatin and GSK-872), respectively. These results demonstrate lyso-Gb3 induces necroptosis via autophagy and suggest that lyso-Gb3 inflamed retinal pigment epithelial cells trigger endothelial dysfunction via the autophagy-dependent necroptosis pathway. This study suggests the involvement of a novel autophagy-dependent necroptosis pathway in the regulation of endothelial dysfunction in Fabry disease.

Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3

  • Maryam Nakhjavani;Eric Smith;Kenny Yeo;Yoko Tomita;Timothy J. Price;Andrea Yool;Amanda R. Townsend;Jennifer E. Hardingham
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

Colorectal cancer cells differentially impact migration and microRNA expression in endothelial cells

  • Do Yei Kim;Sang‑Soo Lee;Young‑Kyung Bae
    • Oncology Letters
    • /
    • v.18 no.6
    • /
    • pp.6361-6370
    • /
    • 2019
  • Angiogenesis is an essential step in cancer progression and metastasis. Changes in the microRNA (miRNA or miR) expression profiles of endothelial cells (ECs) elicited by cancer cells promote angiogenesis. Vascular endothelial growth factor (VEGF), a key pro-angiogenic factor, influences miRNA expression in ECs; however, the exact role that VEGF serves in miRNA regulation during angiogenesis is poorly defined. The present study aimed to demonstrate the differential angiogenic effects on human umbilical vein endothelial cells (HUVECs) of five different colorectal cancer (CRC) cell lines by in vitro HUVEC migration and angiogenesis assays in response to CRC-conditioned medium (CM). Among the tested CMs, LoVo was the most effective cell line in eliciting HUVEC angiogenic phenotypes, at least partially due to its high VEGF level. It was also observed that pro-angiogenesis-regulatory miRNAs (angio-miRNA) miR-296, miR-132, miR-105 and miR-200 were upregulated in the VEGF-rich LoVo CM compared with the VEGF-scarce SW620 CM. In addition, treatment with VEGF receptor 2 inhibitor downregulated the pro-angio-miRNAs, with the exception of miR-132, suggesting that VEGF, as well as additional signaling, is required for angio-miRNA expression. Quantitative analyses on pro-angio-miRNA target expression suggested that independent pathways may be involved in the regulation of their expression. Overall, the data from the present study indicated that multiple paracrine factors, including VEGF secreted by CRCs, effectively modulated angio-miRNA expression, thus impacting their target expression and the angiogenic phenotypes of HUVECs.

Blood Pressure Modulating Effects of Black Raspberry Extracts in vitro and in vivo (복분자 추출물의 항고혈압 활성)

  • Lee, Jung-Hyun;Choi, Hye Ran;Lee, Su Jung;Lee, Min Jung;Ko, Young Jong;Kwon, Ji Wung;Lee, Hee Kwon;Jeong, Jong Tae;Lee, Tae-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.375-383
    • /
    • 2014
  • This study aimed to investigate the effects of 50% ethanol extract of ripe black raspberry (Rubus occidentalis, RBR) on hypertension in human umbilical vein endothelial cells (HUVECs) and in spontaneously hypertensive rats (SHR). Angiotensin converting enzyme (ACE) inhibition and activation of nitric oxide production by endothelial nitric oxide synthase were significantly regulated by RBR in HUVEC cells. Moreover, the SHR showed significantly higher levels of blood pressure, ACE, renin, endothelin-1, and interleukin-6 than Wistar Kyoto rats (WKY). However, treatment with captopril and RBR decreased the levels of these hypertension-related events in the SHR. The renal arteriole showed greater media thickness/lumen diameter (%) in the SHR than in the WKY. However, media thickness/lumen diameter (%) was reduced in SHR by treatment with captopril and RBR. In addition, the number of eosinophilic cardiac muscle cells was decreased in the heart muscles after treatment with captopril and RBR. Therefore, this study suggests that 50% ethanol extract of RBR may be useful for the prevention and treatment of high blood pressure.

Inhibitory Activity of Brine Mineral Water on Cancer Cell Growth, Metastasis and Angiogenesis (해양성 광천수의 암세포 성장, 전이 및 신생 혈관 생성 억제 효과)

  • Kim, Wan-Jae;Li, Hua;Yoon, Taek-Joon;Sim, Jae-Man;Choi, Seon-Kang;Lee, Kwang-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.4
    • /
    • pp.542-547
    • /
    • 2009
  • Brine mineral water(BMW) has recently gained attention as a new water resource due to its biological activities. In this study, BMW from the Geumjin area(Gangneung-city, Korea) was evaluated for its growth inhibition, anti-metastasis and anti-angiogenesis activity against cancer cells. The in vitro cytotoxicity was measured by CCK assay, and the anti-metastasis activity was estimated by lung metastasis in vivo. The in vitro incubation of mouse splenic cells with BMW that had been diluted more than 4-fold showed no effect on the cell growth when compared to a control group. Additionally, BMW inhibited the growth of the EL-4, L5178Y-R and colon26-M3.1 cancer cell lines in a dose-dependent manner. In vivo evaluation of the anti-metastasis activity of BMW in BALB/c mice inoculated with the colon26-M3.1 cell line revealed dose-dependent inhibition in response to treatment with samples that were diluted by up to 9 times. Finally, treatment with BMW effectively suppressed the growth of vascular endothelial growth factor(VEGF) added human umbilical vein endothelial cells. Overall, these results suggest that BMW has anti-cancer activity.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.