• Title/Summary/Keyword: human pose

Search Result 347, Processing Time 0.03 seconds

Pose Calibration of Inertial Measurement Units on Joint-Constrained Rigid Bodies (관절체에 고정된 관성 센서의 위치 및 자세 보정 기법)

  • Kim, Sinyoung;Kim, Hyejin;Lee, Sung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.4
    • /
    • pp.13-22
    • /
    • 2013
  • A motion capture system is widely used in movies, computer game, and computer animation industries because it allows for creating realistic human motions efficiently. The inertial motion capture system has several advantages over more popular vision-based systems in terms of the required space and cost. However, it suffers from low accuracy due to the relatively high noise levels of the inertial sensors. In particular, the accelerometer used for measuring gravity direction loses the accuracy when the sensor is moving with non-zero linear acceleration. In this paper, we propose a method to remove the linear acceleration component from the accelerometer data in order to improve the accuracy of measuring gravity direction. In addition, we develop a simple method to calibrate the joint axis of a link to which an inertial sensor belongs as well as the position of a sensor with respect to the link. The calibration enables attaching inertial sensors in an arbitrary position and orientation with respect to a link.

Emerging Zoonoses: the "One Health Approach"

  • Rabozzi, Giulia;Bonizzi, Luigi;Crespi, Eleonora;Somaruga, Chiara;Sokooti, Maryam;Tabibi, Ramin;Vellere, Francesca;Brambilla, Gabri;Colosio, Claudio
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.77-83
    • /
    • 2012
  • Zoonoses represent a public health risk recently pointed out by the spreading of previously unknown human infectious diseases emerging from animal reservoirs such as severe acute respiratory syndrome and avian influenza caused by H5N1-virus. These outbreaks have shown that animal breeding activities can pose a significant public health risk. Until now, the risk of zoonoses has probably been underestimated, particularly in occupational settings. The emergence or re-emergence of bacterial (Mycobacterium bovis and Brucella spp) or viral (hepatitis E virus) infections shows that zoonoses should be considered as emerging risks in agricultural and animal breeding and should be addressed by specific preventive interventions. Close cooperation and interaction between veterinarians, occupational health physicians and public health operators is necessary, for a worldwide strategy to expand interdisciplinary collaborations and communications in all aspects of health care for humans, animals and the environment. This is what the One Health Approach was intended to be.

Burden of Cancers Related to Smoking among the Indonesian Population: Premature Mortality Costs and Years of Potential Life Lost

  • Kristina, Susi Ari;Endarti, Dwi;Prabandari, Yayi Suryo;Ahsan, Abdillah;Thavorncharoensap, Montarat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6903-6908
    • /
    • 2015
  • Background: As smoking is the leading preventable cause of multiple diseases and premature cancer deaths, estimating the burden of cancer attributable to smoking has become the standard in documenting the adverse impact of smoking. In Indonesia, there is a dearth of studies assessing the economic costs of cancers related to smoking. This study aimed to estimate indirect mortality costs of premature cancer deaths and years of potential life lost (YPLL) attributable to smoking among the Indonesian population. Materials and Methods: A prevalence based method was employed. Using national data, we estimated smoking-attributable cancer mortality in 2013. Premature mortality costs and YPLL were estimated by calculating number of cancer deaths, life expectancy, annual income, and workforce participation rate. A human capital approach was used to calculate the present value of lifetime earnings (PVLE). A discount rate of 3% was applied. Results: The study estimated that smoking attributable cancer mortality was 74,440 (30.6% of total cancer deaths), comprised of 95% deaths in men and 5% in women. Cancers attributed to smoking wereresponsible for 1,207,845 YPLL. Cancer mortality costs caused by smoking accounted for USD 1,309 million in 2013. Among all cancers, lung cancer is the leading cause of death and economic burden. Conclusions: Cancers related to smoking pose an enormous economic burden in Indonesia. Therefore, tobacco control efforts need to be prioritized in order to prevent more losses to the nation. The data of this study are important for advocating national tobacco control policy.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (Ⅷ) - In vivo Bone Marrow Micronucleus Assay of 8 Synthetic Chemicals in Mice - (합성화학물질들의 유전독성평가(Ⅷ) -마우스의 골수세포를 이용한 8종 합성화학물질들의 생체내 소핵시험-)

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • To validate and to estimate the chemical hazard playa very important role to environment and human health. The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this resepct, the clastogenicity of 8 synthetic chemicals was evaluated with bone marrow micronucleus assay in mice. The positive control, mitomycin C(2mg/kg,i.p.) revealed significant induction ratio of percentage of micronucleated polychromatic erythrocytes/l,000 polychromatic erythrocytes compared to carboxymethylcellulose control. The chemicals with relatively high LD$\_$50/ value such as phenylisocyanate (CAS No. 103-71-9), m-aminochlorobenzene (CAS No. 108-42-9) and 2-chloro-4-nitroaniline (CAS No. 121-87-9) revealed no significant induction of micronucleated polychromatic erythrocytes in mice. From this results, 8 synthetic chemicals widely used in industry have revealed no significant micronucleus induction of clastogenicity in mice in this experiment.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (III) - in vitro Chromosomal Aberration Assay with 28 Chemicals in Chinese Hamster Lung Cells -

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Lee, Soo-Young;Park, Jong-Sei
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. In this respect, administrative authorities has great concern to regulate and to evaluate the chemical hazard to environment and human health. The clastogenicity of 28 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. Glycidylacrylate which is one of the most cytotoxic chemical among 28 chemicals tested revealed clastogenicity in the range of 0.31-1.25 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system. Neopentyl glycol (340-1360 $\mu\textrm{g}$/$m\ell$) also revealed weak positive result both in the presence and absence of metabolic activation system. Cyanoguanidine (/$420.5-841 $\mu\textrm{g}$m\ell$) and N-butylchloride ($231.5-926 $\mu\textrm{g}$/m\ell$) revealed weak positive result only in the absence of S-9 metabolic activation system. Nevertheless total aberration percentages of N-butylchloride in the presence of metabolic activation system, and 3,4'-dichlorobenztrifluoride in the absence of S-9 metabolic activation revealed above 5% aberration, there is no statistical significance. From the results of chromosomal aberration assay with 28 synthetic chemicals in Chinese hamster lung cells, glycidylacrylate (CAS No. 106-90-0), neopentyl glycol (CAS No. 126-30-7), N-butyl chloride (CAS No. 109-69-3) and cyanoguanidine (CAS No. 461-58-5) revealed positive clastogenic results in this study.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals [XII] -in vitro Chromosomal Aberration Assay with 11 Chemicals in Chinese Hamster Lung Fibroblast-

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2004
  • The validation of many synthetic chemicals that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, the regulation and evaluation of the chemical hazard playa very important role to environment and human health. The clastogenicity of 11 synthetic chemicals was evaluated in Chinese hamster lung (CHL) fibroblast in vitro. Benzoyl chloride (CAS No. 98-88-4) induced chromosomal aberrations with statistical significance at the concentration of 31-123 $\mug/ml$ and 43 $\mug/ml$ in the absence and presence of S-9 metabolic activation system, respectively. 2-Propyn-l-o1 (CAS No. 107-19-7) and 2-Phenoxy ethanol (CAS No. 122-99-6) revealed clastogenicity only at the highest concentration in the presence of S-9 mixture. However, 1-naphthol (CAS No. 90-15-3) which is one of the most cytotoxic chemical among 11 chemicals tested revealed no clastogenicity both in the presence and absence of S-9 metabolic activation system. From the results of chromosomal aberration assay with 11 synthetic chemicals in CHL fibroblast in vitro, Benzoyl chloride (CAS No. 98-88-4), 2-Propyn-l-01 (CAS No. 107-19-7) and 2-Phenoxy ethanol (CAS No. 122-99-6) revealed positive clastogenic results in this study.

  • PDF

Development of Rapid, Safe Analytical Techniques of Aflatoxins and Their Current Regulation (Aflacxin에 대한 최신 분석법과 규제동향)

  • 정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.3
    • /
    • pp.131-138
    • /
    • 1990
  • Aflatoxins is a chemically diverse group of toxic secondary metabolites that are produced by fungi and often occur in agricultural commodities. Because of their wide range of toxic effects, Aflatoxins cause severe economic losses to farmers and livestock producers and pose a health to human consuming contaminated foods. Long term prospects for biotechnological control of Aflatoxins require elucidation of the specific steps and regulation of their biosynthetic pathways . Aflatoxin determinations can be approached many ways. It is essential to safely handle all experimental materials associated with aflatoxin analysis or aflatoxigenic fungi Visual screening of suspect samples, base on the presence of conidial head of the aspergillus flavus group, and screening samples for the presence of bright greenish yellow flourescence are not chemical tests and such screening techniques may allow aflactoxin contaminated lots into commerce. Microcolumn screening procedures should always be used in conjunction with a quantitative method. Several thin layer chromatography(TLC) and high performance liquid chromatography(HPLC) methods are suitable for quantitation and are in general use. Immunochemical Methods such as the ELISA or affinity column chromatography methods are being rapidly developed. The chemical and immunochemical methods can be reliable if care is taken, using suitable controls and personnel that are well trained . All analytical laboratories should stress safety and include suitable analytical validation procedure. Especially a worldwide enquiry was undertaken in recent to obtain up-to-date information about aflatoxin legislation in as many countries of the world as possible. The information concerns aflatoxin in foodstuffs. aflatoxin MI in dairy products, aflatoxins in animal feedstuffs. Limits and regulations for aflatoxin have been expended in recent with more countries having legislation on subject, more products, and more aflatoxins covered by this legislation.

  • PDF

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Nohmi, Takehiko
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.281-290
    • /
    • 2018
  • Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Development of a computer mouse using gyro-sensors and LEDs (자이로 센서와 LED를 이용한 마우스 개발)

  • Park, Min-Je;Kang, Shin-Wook;Kim, Soo-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.701-706
    • /
    • 2009
  • We proposed the device to control a computer with only a head and eye blinks so that disabilities by car accidents can use a computer. Because they have paralysis of their upper extremities such as C4~C5 paraplegics and cerebral palsy, they cannot efficiently access a general keyboard/mouse not using hands and foots. The cursor position was estimated from a gyro-sensor which can measure head movements, and the mouse event such as click/double click from opto-sensors which can detect eye blinks. The sensor was put on the proper goggle in order not to disturb the visual field. The performance of the proposed device was compared to a general optical mouse, and was used both relative and absolute coordinate in cursor positioning control. The recognition rate of click and double-click was 86% of the optical mouse, the speed of cursor movement by the proposed device was not much different from the mouse. The overall accuracy was 80%. Especially, the relative coordinate is more convenience and accuracy than the absolute coordinate, and can reduce the frequency of reset to prevent the accumulative error.

  • PDF

Evaluation of the genetic toxicity of synthetic chemicals (V) -in vitro Chromosomal Aberration Assay with 17 chemicals in Chinese Hamster Lung Cells-

  • Ryu, Jae-Chun;Kim, Kyung-Ran;Kim, Youn-Jung;Choi, Hae-Yeon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.215-222
    • /
    • 2002
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The clastogenicity of 17 synthetic chemicals was evaluated in Chinese hamster lung fibroblast cells in vitro. Two most cytotoxic chemicals, dodecyl methacrylate (CAS No. 142-90-5) and 2-ethylhexyl methacrylate (CAS No. 688-84-6), among 17 chemicals tested revealed no clastogenicity in the range of 0.0165-0.066 $\mu\textrm{g}$/$m\ell$ and 0.006-0.024 $\mu\textrm{g}$/$m\ell$ both in the presence and absence of metabolic activation system, respectively. All 17 chemicals revealed no significant induction of chromosomal aberration both in the presence and absence of metabolic activation system in this assay. From the results of chromosomal aberration assay with 17 synthetic chemicals in Chinese hamster lung cells in vitro, we did not observed positive clastogenic results in this study.

  • PDF