• 제목/요약/키워드: human oral squamous carcinoma cells

검색결과 95건 처리시간 0.022초

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

Recombinant Human Bone Morphogenetic Protein-2 in Development and Progression of Oral Squamous Cell Carcinoma

  • Zaid, Khaled Waleed;Chantiri, Mansour;Bassit, Ghassan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.927-932
    • /
    • 2016
  • Bone morphogenetic proteins (BMPs), belonging to the transforming growth factor-${\beta}$ superfamily, regulate many cellular activities including cell migration, differentiation, adhesion, proliferation and apoptosis. Use of recombinant human bone morphogenic protein-2 (rhBMP-2) in oral and maxillofacial surgery has seen a tremendous increase. Due to its role in many cellular pathways, the influence of this protein on carcinogenesis in different organs has been intensively studied over the past decade. BMPs also have been detected to have a role in the development and progression of many tumors, particularly disease-specific bone metastasis. In oral squamous cell carcinoma - the tumor type accounting for more than 90% of head and neck malignancies- aberrations of both BMP expression and associated signaling pathways have a certain relation with the development and progression of the disease by regulating a range of biological functions in the altered cells. In the current review, we discuss the influence of BMPs -especially rhBMP-2- in the development and progression of oral squamous cell carcinoma.

Water Extracts of Anthriscus sylvestris Leaf induces Apoptosis in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Yang, Jung Eun;Lee, Seul Ah;Moon, Sung Min;Han, Seul Hee;Choi, Yun Hee;Kim, Su-Gwan;Kim, Do Kyung;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.47-54
    • /
    • 2017
  • Anthriscus sylvestris (L.) Hoffm. is a perennial herb found widely distributed in various regions of Korea, Europe, and New Zealand. The root of A. sylvestris have been extensively used in the treatment for antitussive, antipyretic, cough remedy in Oriental medicine, but the physiologically active function of the leaf of A. sylvestris is as yet unknown. In this study, we investigated the anti-cancer activity and the mechanism of cell death of water extracts of leaf of Anthriscus sylvestris (WELAS), on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that WELAS treatment inhibited cell viability in a concentration- and time-dependent manner. In addition, the treatment of WELAS markedly induced apoptosis in FaDu cells, as determined by the viability assay, DAPI stain and FACS analysis. WELAS also increased the proteolytic cleavage of procaspase-3, -9 and PARP (poly(ADP-ribose) polymerase). In addition, exposure to WELAS decreased the expression of Bcl-2 (an anti-apoptotic factor), but increased the expression of Bax (a pro-apoptotic factor), suggesting that mitochondria-dependent apoptotic pathways are mediated in WELAS-induced apoptosis. Taken together, these results indicate that water extracts of leaf of A. sylvestris inhibits cell growth and induces apoptosis via the mitochondrial-dependent apoptotic pathway in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, we propose that the water extracts of leaf of A. sylvestris is a novel chemotherapeutic drug, having growth inhibitory properties and induction of apoptosis in human oral cancer cells.

Induction of apoptosis by methanol extracts of Ficus carica L. in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.99-106
    • /
    • 2020
  • Ficus carica L. (fig) is one of the first cultivated crops and is as old as humans. This plant has been extensively used as a traditional medicine for treating diseases, such as cough, indigestion, nutritional anemia, and tuberculosis. However, the physiological activity of fig leaves on oral cancer is as yet unknown. In this study, we investigated the anticancer effect of methanol extracts of Ficus carica (MeFC) and the mechanism of cell death in human FaDu hypopharyngeal squamous carcinoma cells. MeFC decreased the viability of oral cancer (FaDu) cells but did not affect the viability of normal (L929) cells, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and Live and Dead assay. In addition, MeFC induced apoptosis through the proteolytic cleavage of procaspase-3, -9, poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by 4′,6-diamidino-2-phenylindole dihydrochloride staining and western blot analysis. Moreover, a concentration of MeFC without cytotoxicity (0.25 mg/mL) significantly suppressed colony formation, a hallmark of cancer development, and completely inhibited the colony formation at 1 mg/mL. Collectively, these results suggest that MeFC exhibits a potent anticancer effect by suppressing the growth of oral cancer cells and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, the methanol extract of Ficus carcica leaves provide a natural chemotherapeutic drug for human oral cancer.

Antitumor effects of octyl gallate on hypopharyngeal carcinoma cells

  • NTK, Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.218-224
    • /
    • 2020
  • The antitumor effects of octyl gallate (OG) were investigated on FaDu human hypopharyngeal squamous carcinoma cells. At various concentrations, OG inhibited the proliferation of FaDu cells by suppressing cell cycle regulators and induced apoptosis by activating caspase 3 and its downstream poly (ADP-ribose) polymerase, thereby damaging DNA. Immunoblotting demonstrated that OG significantly suppressed the expression of integrin family proteins (integrin α4, αv, β3, β4), hindering cell adhesion. The reduced expression of integrins subsequently mediated the mitogen-activated protein kinase signaling pathway to stimulate the activation of extracellular signal-regulated kinases and c-jun N-terminal kinases, leading to apoptosis. Thus, OG demonstrated antitumor activity on hypopharyngeal squamous carcinoma cells by suppressing cell proliferation and inducing apoptosis.

Lipopeptides Extract from Bacillus Amyloliquefaciens Induce Human Oral Squamous Cancer Cell Death

  • Kuo, Chen-Hui;Lin, Yun-Wei;Chen, Ruey-Shyang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.91-96
    • /
    • 2015
  • A lipopeptide extract of Bacillus amyloliquefaciens BACY1 (BLE) was found to induce cell death in human oral squamous cell carcinoma (OSCC) cell lines, SCC4 and SCC25, in this study. The results of MTT assay showed that BLE inhibited OSCC cell proliferation in a dose-dependent manner. BLE was also effective in increasing the sub-G1 phases. Furthermore, when membrane damage in SCC4 cells treated with BLE was monitored by LDH assay, release of LDH was significantly increased. The protein and mRNA levels of pro-apoptotic Bax, and caspase-3 were up-regulated by BLE. Taken together, these results suggest that BLE induces apoptosis and then inhibits the cell proliferation of human OSCC cells.

Autophagy inhibition by cudraxanthone D regulates epithelial-mesenchymal transition in SCC25 cells

  • Yu, Su-Bin;Bang, Tae-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.30-38
    • /
    • 2021
  • Cudraxanthone D (CD) is a natural xanthone compound derived from the root barks of Cudrania tricuspidata. However, the biological functions of CD in human metabolism have been rarely reported until now. Autophagy is the self-degradation process related to cancer cell metastasis. Here, we elucidated the effects of CD on human oral squamous cell carcinoma (OSCC) cells' metastatic ability. We confirmed that CD effectively decreased the proliferation and viability of SCC25 human OSCC cells in time- and dose-dependent manners. Also, the metastasis phenotype of the SCC25 cell (migration, invasion, and epithelial-mesenchymal transition [EMT]) was inhibited by CD. To further investigate the mechanism by which CD inhibited the metastatic capacity, we detected the relationship between EMT and autophagy in the SCC25 cells. The results revealed that CD inhibited the metastasis of the SCC25 cells by attenuating autophagy. Thus, our findings produced a potential novel agent for the treatment of human OSCC metastasis.

Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Lee, Seul Ah;Park, Bo-Ram;Moon, Sung Min;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제43권2호
    • /
    • pp.61-68
    • /
    • 2018
  • Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase -3, -7, -9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor). Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.

NaF-induced Autophagy on SCC25 Human Tongue Squamous Cell Carcinoma Cells

  • Kang, Jin-Mo;Lee, Bo-Young;Kim, In-Ryoung;Kim, Yong-Ho;Yu, Su-Bin;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • 제39권4호
    • /
    • pp.193-199
    • /
    • 2014
  • Fluoride has been accepted as an important material for oral health and is widely used to prevent dental caries in dentistry. However, its safety is still questioned by some. Autophagy has been implicated in cancer cell survival and death, and may play an important role in oral cancer. This study was undertaken to examine whether sodium fluoride (NaF) modulates autophagy in SCC25 human tongue squamous cell carcinoma cells. NaF demonstrated anticancer activity via autophagic and apoptotic cell death. Autophagic vacuoles were detectable using observed to form by monodansylcadaverine (MDC) and acridine orange (AO). Analysis of NaF-treated SCC25 cells for the presence of biochemical markers revealed direct effects on the conversion of LC-3II, degradation of p62/SQSTM1, cleavage formation of ATG5 and Beclin-1, and caspase activation. NaF-induced cell death was suppressed by the autophagy inhibitor 3-methyladenine (3-MA). NaF-induced autophagy was confirmed as a pro-death signal in SCC25 cells. These results implicate NaF as a novel anticancer compound for oral cancer therapy.

Trifolium pratense induces apoptosis through caspase pathway in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제44권3호
    • /
    • pp.81-88
    • /
    • 2019
  • Trifolium pratense leaves (red clover) has been used in Oriental and European folk medicine for the treatment of whooping cough, asthma, and eczema, and is now being used to treat and alleviate the symptoms, such as hot flushes, cardiovascular health effects that occur in postmenopausal women. However, relatively little scientific data is available on the physiological activity of this plant. Therefore, in this study, we investigated the anti-cancer activity of T. pratense leaves using methanol extract of T. pratense leaves (MeTP) on human FaDu hypopharyngeal squamous carcinoma cells. MeTP inhibited the viability of FaDu cells by inducing apoptosis through the cleavage of procaspase-3, -7, and -9 and poly (adenosine diphosphate ribose-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Live & dead assay, 4'6-diamidino-2-phenylindole stain, fluorescence-activated cell sorting analysis, and Western blot analysis. In addition, colony formation was slightly inhibited when FaDu cells were treated with a non-cytotoxic concentration (0.125 mg/mL) of MeTP and almost completely inhibited when cells were treated with 0.25 mg/mL MeTP. Collectively, these results indicate that MeTP induced cell apoptosis via caspase- and mitochondrial-dependent apoptotic pathways, and inhibited colony formation of cancer cells in FaDu human hypopharyngeal squamous carcinoma cells. These findings suggest MeTP should be considered for clinical development as a chemotherapeutic option in oral cancer.