• Title/Summary/Keyword: human oral squamous carcinoma cells

Search Result 94, Processing Time 0.023 seconds

Mechanism Underlying NaF-Induced Apoptosis in Human Oral Squamous Cell Carcinoma

  • Hur, Young-Joo;Kim, Do-Kyun;Lee, Seung-Eun;Kim, In-Ryoung;Jeong, Na-Young;Kim, Ji-Young;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.51-60
    • /
    • 2010
  • Few studies have evaluated the apoptosis-inducing efficacy of NaF on cancer cells in vitro but there has been no previous investigation of the apoptotic effects of NaF on human oral squamous cell carcinoma cells. In this study, we have investigated the mechanisms underlying the apoptotic response to NaF treatment in the YD9 human squamous cell carcinoma cell line. The viability of YD9 cells and their growth inhibition were assessed by MTT and clonogenic assays, respectively. Hoechst staining, DNA electrophoresis and TUNEL staining were conducted to detect apoptosis. YD9 cells were treated with NaF, and western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, and MMP and proteasome activity assays were performed sequentially. The NaF treatment resulted in a time- and dose-dependent decrease in YD9 cell viability, a dose-dependent inhibition of cell growth, and the induction of apoptotic cell death. The apoptotic response of these cells was manifested by nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, a decreased DNA content, the release of cytochrome c into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, a significant shift of the Bax/Bcl-2 ratio, and the activation of caspase-9, caspase-3, PARP, Lamin A/C and DFF45 (ICAD). Furthermore, NaF treatment resulted in the downregulation of G1 cell cyclerelated proteins, and upregulation of p53 and the Cdk inhibitor $p27^{KIP1}$. Taken collectively, our present findings demonstrate that NaF strongly inhibits YD9 cell proliferation by modulating the expression of G1 cell cycle-related proteins and inducing apoptosis via mitochondrial and caspase pathways.

Coptidis Rhizoma Extract induces Apoptotic Cell Death in YD-10B Cell (황련(黃連)이 구강암 세포에서의 세포자멸사에 미치는 영향)

  • Lee, Jae-Geun;Park, Sook-Jahr;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.50-59
    • /
    • 2009
  • Objectives : The aim of this study was conducted that CRE (Coptidis Rhizoma Extract) induces apoptosis in YD-10B cells, human oral squamous carcinoma cell line. Methods : In this study, YD-10B cells were exposed to CRE (0.03-0.30 mg/ml), for 6-24 hours. We measured the effects of CRE on the changes of cell viability and cell membrane, TUNEL assay of CRE-treated YD-10B cell. Results : In this study, CRE caused a decrease of viability in YD-10B cells, human oral squamous carcinoma cell line. When YD-10B cells were treated with CRE, cells showed dose-dependent manner apoptotic cell death. Conclusions : These results suggest that CRE may be potential therapeutic approach in the clinical management of oral squamous cell carcinoma.

  • PDF

Bradykinin-induced $Ca^{2+}$ signaling in human oral squamous cell carcinoma HSC-3 cells

  • Sohn, Byung-Jin;Kang, Ji-Ah;Jo, Su-Hyun;Choi, Se-Young
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2009
  • Cytosolic $Ca^{2+}$ is an important regulator of tumor cell proliferation and metastasis. Recently, the strategy of blocking receptors and channels specific to certain cancer cell types has emerged as a potentially viable future treatment. Oral squamous cell carcinoma is an aggressive form of cancer with a high metastasis rate but the receptor-mechanisms involved in $Ca^{2+}$ signaling in these tumors have not yet been elucidated. In our present study, we report that bradykinin induces $Ca^{2+}$ signaling and its modulation in the human oral squamous carcinoma cell line, HSC-3. Bradykinin was found to increase the cytosolic $Ca^{2+}$ levels in a concentration-dependent manner. This increase was inhibited by pretreatment with the phospholipase C-${\beta}$ inhibitor, U73122, and also by 2-aminoethoxydiphenyl borate, an inhibitor of the inositol 1,4,5-trisphosphate receptor. Pretreatment with extracellular ATP also inhibited the peak bradykinin-induced $Ca^{2+}$ rise. In contrast, the ATP-induced rise in cytosolic $Ca^{2+}$ was not affected by pretreatment with bradykinin. Pretreatment of the cells with either forskolin or phorbol 12-myristate 13-acetate (activators of adenylyl cyclase and protein kinase C, respectively) prior to bradykinin application accelerated the recovery of cytosolic $Ca^{2+}$ to baseline levels. These data suggest that bradykinin receptors are functional in $Ca^{2+}$ signaling in HSC-3 cells and may therefore represent a future target in treatment strategies for human oral squamous cell carcinoma.

Methanol extracts of Humulus japonicus induced apoptosis in human FaDu hypopharynx squamous carcinoma cells

  • Jang, Ji Yeon;Park, Bo-Ram;Lee, Seul Ah;Choi, Mi Suk;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.47 no.1
    • /
    • pp.9-15
    • /
    • 2022
  • Humulus japonicus (HJ) is a widely used herbal medicine for pulmonary tuberculosis, hypertension, leprosy, and venomous wounds in Asia, particularly in China. Although HJ has certain physiological activities, such as longitudinal bone growth, antioxidation and alleviation of rheumatism, its anticancer activities, other than in colorectal and ovarian cancer, are yet to be studied. In this study, we investigated the anti-cancer activity and mechanism of methanol extracts of HJ (MeHJ) against human FaDu hypopharyngeal squamous carcinoma cells. MeHJ suppressed FaDu cell viability without affecting normal cells (L929), which was demonstrated using the MTT and Live & Dead assays. Furthermore, MeHJ effectively inhibited colony formation of FaDu cells, even at non-cytotoxic concentrations, and significantly induced apoptosis through the proteolytic cleavage of caspase-9, -3, -7, poly (ADP-ribose) polymerase and through the downregulation of BCL-2 and upregulation of BAX in FaDu cells, as determined by DAPI staining, flow cytometry, and western blot analyses. Collectively, these findings suggest that the inhibitory effects of MeHJ on the growth and colony formation of oral cancer cells may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeHJ has the potential to be used as a natural chemotherapeutic drug against human oral cancer.

Resveratrol inhibits cell growth via targeting the Bmi-1 pathway in YD-10B human oral squamous cell carcinoma cells

  • Park, Kyoung-Eun;Ok, Chang Youp;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.115-125
    • /
    • 2020
  • Resveratrol has been reported to exert anticancer activity via modulation of multiple pathways and genes. In this study, we examined the effect of resveratrol on YD-10B human oral squamous cell carcinoma cells and its molecular mechanisms of action. We found that resveratrol inhibited the proliferation of YD-10B cells in a dose- and time-dependent manner. The suppressive effect of resveratrol was accompanied by a reduction in Bmi-1 gene expression. We observed that silencing the Bmi-1 gene by small interfering RNA effectively downregulated the levels of GLUT1 mRNA and protein, which were also repressed by resveratrol. Bmi-1 silencing increased the number of YD-10B cells in S-phase arrest by approximately 2.3-fold compared with the control. In conclusion, the results of the present study demonstrate, for the first time, that resveratrol suppresses Bmi-1-mediated GLUT1 expression in human oral squamous cell carcinoma cells and suggest that the specific molecular targeting of Bmi-1 and/or GLUT1 expression can be combined with a chemotherapeutic strategy to improve the response of oral cancer cells to resveratrol.

Recombinant Azurin from Pseudomonas aeruginosa Induces Apoptotic Cell Death in Oral Squamous Carcinoma Cells

  • Kim, Uk-Kyu;Jeon, Hyun-Jun;Lee, Moo-Hyung;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.35-42
    • /
    • 2010
  • The use of bacteria in the treatment of cancer has a long and interesting history. The use of live bacteria in this way however has a number of potential problems including toxicity. Purified low molecular weight bacterial proteins have therefore been tested as anticancer agents to avoid such complications. Oral cancer is a widely occurring disease around the world and these lesions are typically very resistant to anticancer agents. In our present study we investigated the effects of purified recombinant azurin from Pseudomonas (P.) aeruginosa against YD-9 (p53-positive) human oral squamous carcinoma cells. Azurin showed cytotoxic effects against these cells in a dose dependent manner. The cell death accompanied by this treatment was found to be characterized by chromatin condensation and apoptotic bodies. Azurin treatment was further found to increase the expression of p53 The stabilization of p53 and induction of apoptosis in YD-9 cells by azurin suggests that it has potentially very strong anticancer properties in oral squamous carcinoma.

Methanol extracts of Asarum sieboldii Miq. induces apoptosis via the caspase pathway in human FaDu hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • Asarum sieboldii Miq. (Aristolochiaceae) is a perennial herbaceous plant and has been used as traditional medicine for treating diseases, cold, fever, phlegm, allergies, chronic gastritis, and acute toothaches. Also, it has various biological activities, such as antiallergic, antiinflammatory, antinociceptive, and antifungal. However, the anticancer effect of A. sieboldii have been rarely reported, except anticancer effect on lung cancer cell (A549) of water extracts of A. sieboldii. This study investigated the anticancer activity of methanol extracts of A. sieboldii (MeAS) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. MeAS inhibited FaDu cells grown dose-dependently without affecting normal cells (L929), as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and live and dead assay. In addition, concentration of MeAS without cytotoxicity (0.05 and 0.1 mg/mL) inhibited migration and colony formation. Moreover, MeAS treatment significantly induced apoptosis through the proteolytic cleavage of caspase-3, -7, -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by fluorescence-activated cell sorting analysis, 4'6-diamidino-2-phenylindole stain, and western blotting. Altogether, these results suggest that MeAS exhibits strong anticancer effects by suppressing the growth of oral cancer cells and the migration and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeAS can serve as a natural chemotherapeutic for human oral cancer.

Anticancer effects of Ulva compressa extracts on FaDu human hypopharangeal squamous carcinoma cells in vitro

  • Jang, Ji Yun;Jung, Seo Yun;Park, Bo-Ram;Lee, Seul Ah;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.47 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Ulva compressa Linnaeus (UCL) is a green algae seaweed that performs photosynthesis and is used as a food material in some Asian regions including Korea. It is known to be the dominant species in copper ion-contaminated seas, and many studies on copper ion resistant mechanisms have been reported. UCL is known to have an excellent antioxidant effect, but limited information is available regarding its other physiological activities. In this study, we investigated the anticancer activity of 30% prethanol extracts of Ulva compressa Linnaeus (30% PeUCL) and the underlying mechanisms of its activity on human FaDu hypopharyngeal squamous carcinoma cells. The 30% PeUCL extracts suppressed FaDu cell viability without affecting normal cells (L929), as determined by MTT and viability assays. Furthermore, the 30% PeUCL extracts induced apoptosis, as determined by DAPI staining. The 30% PeUCL extracts inhibited colony formation effectively as well as wound-healing of FaDu cells, even at noncytotoxic concentrations. In addition, 30% PeUCL extracts induced apoptosis significantly through proteolytic cleavage of caspase-3, -7, and -9, and poly (ADP-ribose) polymerase, and by downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by Western blot analysis. Collectively, these results suggest that the inhibitory effect of 30% PeUCL extracts on the growth of oral cancer cells, colony formation and wound-healing may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, 30% PeUCL extracts can be administered as a natural chemotherapeutic drug for the treatment of human oral cancers.

Apoptosis induced by water extracts of Nypa fruticans wurmb via a mitochondria-dependent pathway in human FaDu hypopharyngeal squamous carcinoma cells

  • Lee, Seul Ah;Choi, Mi Suk;Park, Bo-Ram;Kim, Jin-Soo;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Nypa fruticans Wurmb (NFW) contains a large amount of phenolic acid and flavonoids, and is popular as a superfood in Myanmar. NFW has various biological activities, such as anti-inflammatory, anti-oxidant, and neuroprotective properties; however, the anti-cancer effect of NFW have not been reported. In this study, we investigated the anticancer activity of water extracts of NFW (WeNFW) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. The WeNFW inhibited FaDu cell growth in a dose-dependent manner without affecting normal cells (L929), as determined by an MTT assay and Live and Dead assay. In addition, the concentrations of WeNFW without cytotoxicity (0.025, 0.05, and 0.1 mg/mL) inhibited wound healing and colony formation. Furthermore, WeNFW significantly induced apoptosis through the proteolytic cleavage of caspase-3 and -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by DAPI staining, FACS analysis, and western blot analysis. Taken together, these results suggest that WeNFW exhibits potent anti-cancer effects by suppressing the growth of oral cancer cells, wound healing and colony formation activity. Via mitrochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, WeNFW can provide a natural chemotherapeutic drug for oral cancer in humans.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.