• Title/Summary/Keyword: human oral cancer cell

Search Result 234, Processing Time 0.03 seconds

Anticancer Effects of Aloe on Sarcoma 180 in ICR Mouse and on Human Cancer Cell Lines (복수암 생쥐와 인체 암세포에 대한 알로에의 항암 작용)

  • Jeong, He-Yun;Kim, Jae-Hyun;Hwang, Se-Jin;Rhee, Dong-Kwon
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.311-321
    • /
    • 1994
  • Anticancer effects of Aloe on sarcoma 180 in ICR mouse or human cancer cells were determined. Sarcoma 180 cells were inoculated subcutaneously into male ICR mouse to determine effect of Aloe on tumor gowth, or inoculated intraperitoneally into male ICR mouse to determine effect of Aloe on life span prolongation, followed by oral administration of Aloe vera(10 mg/kg/day, 50 mg/kg/day) or Aloe arborescens(10 mg/kg/day, 100 mg/kg/day) once a day for 14 days. The administration of Aloe vera or Aloe arborescens did not suppress tumor growh. However the life span of ICR mouse was prolonged to 19%(p<0.05), 22%(p<0.05) and 32%(p<0.05) by administration of Aloe vera 10 mg/kg/day, Aloe vera 50 mg/kg/day, and Aloe arborescens 100 mg/kg/day, respectively. To determine anticancer effect of Aloe in vitro, Aloe extract was added to the culture of human gastric cancer cells(SNU-1) and colorectal cancer cells(SNU-C2A), and concentration of Aloe to inhibit cancer cell growth was determined using MTT(3-[ 4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay. High $ID_{50}$ values of Aloe vera and Aloe arborescens against gastric cancer cell line(SNU-1) and colorectal cancer cell line(SNU-C2A) suggest that Aloe gel does not have anticancer effect on these specific human cancer cells although high concentration of Aloe inhibited growth of human cancer cells significantly.

  • PDF

Porphyra tenera induces apoptosis of oral cancer cells (구강암 세포주에서 김 추출물에 의한 세포자멸사 유도)

  • Kim, Sang Chan;Lee, Jong Rok;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • Objectives : Laver (Porphyra tenera), a red algae species, is one of the most widely consumed edible seaweed in Korea. Laver contains various substances such as essential amino acid, fiber, minerals and polyphenols that benefit human health. In the present study, we prepared ethanol extracts from commercially processed product of Porphyra tenera, and evaluated the growth inhibitory effect against human oral squamous carcinoma YD-10B cells. Methods : Cell viability was measured by MTT assay. Apoptosis was confirmed by TUNEL assay and flow cytometry with the green fluorescent dye FITC annexin V entering apoptotic cells and the red fluorescent dye PI not entering. The expression of the relevant proteins was detected using Western blot. Results : Ethanol extracts of Porphyra tenera (PTE, $50-200{\mu}g/m{\ell}$) caused a significant decrease of cell viability in a dose dependant manner. The cell death occurred as a result of apoptotic process as determined by TUNEL assay and flow cytometric analysis. In line with this observation, decrease in procaspase proteins and increase in cytosolic cytochrome c were observed in cells treated with PTE. In addition, exposure to PTE decreased the expression levels of Bcl-2, and induced PARP cleavage and AIF translocation from mitochondria to nucleus. Conclusions : In conclusion, PTE exerts anti-cancer effects by inducing apoptosis via caspase activation and AIF nuclear translocation in YD-10B cells. These results provide evidence for the possible therapeutic effect of Porphyra tenera in oral cancer cells.

Resveratrol inhibits cell growth via targeting the Bmi-1 pathway in YD-10B human oral squamous cell carcinoma cells

  • Park, Kyoung-Eun;Ok, Chang Youp;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.115-125
    • /
    • 2020
  • Resveratrol has been reported to exert anticancer activity via modulation of multiple pathways and genes. In this study, we examined the effect of resveratrol on YD-10B human oral squamous cell carcinoma cells and its molecular mechanisms of action. We found that resveratrol inhibited the proliferation of YD-10B cells in a dose- and time-dependent manner. The suppressive effect of resveratrol was accompanied by a reduction in Bmi-1 gene expression. We observed that silencing the Bmi-1 gene by small interfering RNA effectively downregulated the levels of GLUT1 mRNA and protein, which were also repressed by resveratrol. Bmi-1 silencing increased the number of YD-10B cells in S-phase arrest by approximately 2.3-fold compared with the control. In conclusion, the results of the present study demonstrate, for the first time, that resveratrol suppresses Bmi-1-mediated GLUT1 expression in human oral squamous cell carcinoma cells and suggest that the specific molecular targeting of Bmi-1 and/or GLUT1 expression can be combined with a chemotherapeutic strategy to improve the response of oral cancer cells to resveratrol.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

p16 - a Possible Surrogate Marker for High-Risk Human Papillomaviruses in Oral Cancer?

  • Sritippho, Thanun;Pongsiriwet, Surawut;Lertprasertsuke, Nirush;Buddhachat, Kittisak;Sastraruji, Thanapat;Iamaroon, Anak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4049-4057
    • /
    • 2016
  • Background: High-risk human papillomaviruses (HR-HPV), particularly types 16 and 18, have been found to play an important role in head and neck cancer, including oropharyngeal squamous cell carcinoma (OPSCC) and oral squamous cell carcinoma (OSCC). p16, a cell cycle inhibitor, has been postulated as a surrogate marker for HR-HPV, since p16 is aberrantly overexpressed in such lesions, especially in HR-HPV-positive OPSCC. However, p16 as a surrogate marker for HR-HPV infection in cancers of the oral cavity remains controversial. Objective: The objectives of the study were to investigate the expression of p16 and the presence of HR-HPV in OSCC and oral verrucous carcinoma (VC) and to determine if p16 could be used as a surrogate marker for HR-HPV. Materials and Methods: Forty one formalin-fixed, paraffin-embedded tissues of OSCC (n=37) or VC (n=4) with clinical and histopathologic data of each case were collected. Expression of p16 was determined by immunohistochemistry, focusing on both staining intensity and numbers of positive cells. The presence of HPV types 16 and 18 was detected by polymerase chain reaction (PCR). Descriptive statistics were employed to describe the demographic, clinical, and histopathologic parameters. Associations between p16 overexpression, HR-HPV and all variables were determined by Fisher's exact test, odds ratios (ORs) and corresponding 95% confidence intervals (CIs). In addition, the use of p16 as a surrogate marker for HR-HPV was analyzed by sensitivity and specificity tests. Results: p16 was overexpressed in 8/37 cases (21.6%) of OSCC and 2/4 cases (50%) of VC. HPV-16 was detected in 4/34 OSCC cases (11.8%) and HPV-18 was detected in 1/34 OSCC cases (2.9%). Co-infection of HPV-16/18 was detected in 1/4 VC cases (25%). Both p16 overexpression and HR-HPV were significantly associated with young patients with both OSCC and VC (p<0.05, OR 20, 95% CI 1.9-211.8; p<0.05, OR 23.3, 95% CI 2.4-229.7, respectively). p16 was able to predict the presence of HPV-16/18 in OSCC with 40% sensitivity and 79.3% specificity and in VC with 100% sensitivity and 66.7% specificity, respectively. Conclusions: p16 overexpression was found in 24.4% of both OSCC and VC. HR-HPV, regardless of type, was detected in 15.8% in cases of OSCC and VC combined. The results of sensitivity and specificity tests suggest that p16 can be used as a surrogate marker for HR-HPV in OSCC and VC.

Anticancer effects of D-pinitol in human oral squamous carcinoma cells

  • Shin, Hyun-Chul;Bang, Tea-Hyun;Kang, Hae-Mi;Park, Bong-Soo;Kim, In-Ryoung
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.152-161
    • /
    • 2020
  • D-pinitol is an analog of 3-methoxy-D-chiro-inositol found in beans and plants. D-pinitol has anti-inflammatory, antidiabetic, and anticancer effects. Additionally, D-pinitol induces apoptosis and inhibits metastasis in breast and prostate cancers. However, to date, no study has investigated the anticancer effects of D-pinitol in oral cancer. Therefore, in this study, whether the anticancer effects of D-pinitol induce apoptosis, inhibit the epithelial-to-mesenchymal transition (EMT), and arrest cell cycle was investigated in squamous epithelial cells. D-pinitol decreased the survival and cell proliferation rates of CAL-27 and Ca9-22 oral squamous carcinoma cells in a concentration- and time-dependent manner. Evidence of apoptosis, including nuclear condensation, poly (ADP-ribose) polymerase, and caspase-3 fragmentation, was also observed. D-pinitol inhibited the migration and invasion of both cell lines. In terms of EMT-related proteins, E-cadherin was increased, whereas N-cadherin, Snail, and Slug were decreased. D-pinitol also decreased the expression of cyclin D1, a protein involved in the cell cycle, but increased the expression of p21, a cyclin-dependent kinase inhibitor. Hence, D-pinitol induces apoptosis and cell cycle arrest in CAL-27 and Ca9-22 cells, demonstrating an anticancer effect by decreasing the EMT.

Cathepsin D Expression in Oral Squamous Cell Carcinoma and Cancer-Associated Fibroblasts: A Preliminary Study

  • Kim, Dokyeong;Moon, Sook
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.227-232
    • /
    • 2021
  • Background: Cancer-associated fibroblasts (CAFs) are abundant in tumor microenvironments and interact with cancer cells to promote tumor proliferation in oral squamous cell carcinoma (OSCC). Cathepsin D (CTSD) is a soluble lysosomal aspartic endopeptidase involved in tumor proliferation and angiogenesis. In this preliminary study, we observed CTSD expression in OSCC and CAFs, postulating that CTSD might act as a bridge between OSCC and CAFs. Methods: Human epidermal keratinocytes (HEKs), OSCC, and immortalized human normal oral fibroblasts (hTERT-hNOFs) were used in this study. Additionally, we used hTERT-hNOFs transfected with an empty vector, WT (wild-type)-YAP (Yes-associated protein), and YAPS127A (YAP serine 127 to alanine). YAP127A hTERT-hNOFs activated fibroblasts similar to CAFs. To identify CTSD expression between OSCC and CAFs, conditioned medium (CM) was collected from each cell. Protein expression of CTSD was identified by western blotting. Results: To identify the expression of CTSD in fibroblasts stimulated by OSCC, we treated fibroblasts with CM from HEK and OSCC. Results indicated that hTERT-hNOFs with OSCC CM showed a weakly increased expression of CTSD compared to stimulation by HEK CM. This indicates that CAFs, YAPS127 hTRET-hNOFs, overexpress CTSD protein. HEK cells showed no CTSD expression, regardless of treatment with fibroblast CM, whereas OSCC highly expressed CTSD proteins compared with the CTSD expression in HEK cells. We also found that CTSD expression was unaffected by changes in transforming growth factor-β levels. Conclusion: This study proposes that CTSD might have potential as an interacting executor between OSCC and CAFs. Further studies are needed to investigate the role of CTSD in tumor and stromal cells.

Salivary biomarkers in oral squamous cell carcinoma

  • Nguyen, Truc Thi Hoang;Sodnom-Ish, Buyanbileg;Choi, Sung Weon;Jung, Hyo-Il;Cho, Jaewook;Hwang, Inseong;Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.301-312
    • /
    • 2020
  • In disease diagnostics and health surveillance, the use of saliva has potential because its collection is convenient and noninvasive. Over the past two decades, the development of salivary utilization for the early detection of cancer, especially oral cavity and oropharynx cancer has gained the interest of the researcher and clinician. Until recently, the oral cavity and oropharynx cancers are still having a five-year survival rate of 62%, one of the lowest in all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). Despite the ease of accessing the oral cavity in clinical examination, most OSCC lesions are not diagnosed in the early stage, which is suggested to be the main cause of the low survival rate. Many studies have been performed and reported more than 100 potential saliva biomarkers for OSCC. However, there are still obstacles in figuring out the reliable OSCC salivary biomarkers and the clinical application of the early diagnosis protocol. The current review article discusses the emerging issues and is hoped to raise awareness of this topic in both researchers and clinicians. We also suggested the potential salivary biomarkers that are reliable, specific, and sensitive for the early detection of OSCC.

Recombinant Azurin from Pseudomonas aeruginosa Induces Apoptotic Cell Death in Oral Squamous Carcinoma Cells

  • Kim, Uk-Kyu;Jeon, Hyun-Jun;Lee, Moo-Hyung;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.35-42
    • /
    • 2010
  • The use of bacteria in the treatment of cancer has a long and interesting history. The use of live bacteria in this way however has a number of potential problems including toxicity. Purified low molecular weight bacterial proteins have therefore been tested as anticancer agents to avoid such complications. Oral cancer is a widely occurring disease around the world and these lesions are typically very resistant to anticancer agents. In our present study we investigated the effects of purified recombinant azurin from Pseudomonas (P.) aeruginosa against YD-9 (p53-positive) human oral squamous carcinoma cells. Azurin showed cytotoxic effects against these cells in a dose dependent manner. The cell death accompanied by this treatment was found to be characterized by chromatin condensation and apoptotic bodies. Azurin treatment was further found to increase the expression of p53 The stabilization of p53 and induction of apoptosis in YD-9 cells by azurin suggests that it has potentially very strong anticancer properties in oral squamous carcinoma.