• Title/Summary/Keyword: human non-small-cell lung cancer cells

Search Result 109, Processing Time 0.029 seconds

P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer

  • Ko, Hyo Rim;Nguyen, Truong L.X.;Kim, Chung Kwon;Park, Youngbin;Lee, Kyung-Hoon;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.159-165
    • /
    • 2015
  • Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling.

Luteolin attenuates migration and invasion of lung cancer cells via suppressing focal adhesion kinase and non-receptor tyrosine kinase signaling pathway

  • Masraksa, Wuttipong;Tanasawet, Supita;Hutamekalin, Pilaiwanwadee;Wongtawatchai, Tulaporn;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Non-small cell lung cancer is mostly recognized among other types of lung cancer with a poor prognosis by cause of chemotherapeutic resistance and increased metastasis. Luteolin has been found to decrease cell metastasis. However, its underlying mechanisms remain unresolved. The objective of this study was to examine the effect (and its mechanism) of luteolin on the migration and invasion of human non-small cell lung cancer A549 cells. MATERIALS/METHODS: Cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Wound healing and transwell assays were evaluated to assess migration and invasion, respectively. Western blot analysis and immunofluorescence were further performed to investigate the role of luteolin and its mechanisms of action. RESULTS: Administration with up to 40 μM luteolin showed no cytotoxic activity on lung cancer A549 cells or non-cancer MRC-5 cells. Additionally, luteolin at 20-40 μM significantly suppressed A549 cells' migration, invasion, and the formation of filopodia in a concentration-dependent manner at 24 h. This is similar with western blot analysis, which revealed diminished the phosphorylated focal adhesion kinase (pFAK), phosphorylated non-receptor tyrosine kinase (pSrc), Ras-related C3 botulinum toxin substrate 1 (Rac1), cell division control protein 42 (Cdc42), and Ras homolog gene family member A (RhoA) expression levels. CONCLUSIONS: Overall, our data indicate that luteolin plays a role in controlling lung cancer cells' migration and invasion via Src/FAK and its downstream Rac1, Cdc42, and RhoA pathways. Luteolin might be considered a promising candidate for suppressing invasion and metastasis of lung cancer cells.

Inhibitory Effects of Syk Transfection on Lung Cancer Cell Invasion

  • Peng, Chuan-Liang;Zhang, Ying;Sun, Qi-Feng;Zhao, Yun-Peng;Hao, Ying-Tao;Zhao, Xiao-Gang;Cong, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3001-3003
    • /
    • 2013
  • Objective: Spleen tyrosine kinase (Syk) is closely related to tumor invasion and metastasis, and has been shown to have potential inhibitory effects in tumors. In this study, we constructed a eukaryotic expression vector for Syk and analyzed its effects on invasive ability of the A549 non-small cell lung cancer cell line in vitro. Methods: A fragment of Syk was obtained by RT-PCR from human lung cancer cells and cloned into the expression vector pLNCXSyk. After restriction endonuclease digestion, PCR and DNA sequencing confirmation, the recombinant Syk expression plasmid was transfected into A549 human lung cancer cells using lipofectamine protocols. After selection, the cells stably expressed Syk. Detection of Syk expression of the cells by RT-PCR, and invasive ability were examined. Results: The eukaryotic expression plamid pLNCXSyk was constructed and expressed stably in the A549 human lung cancer cells. The RT-PCR results showed that Syk mRNA expression was upregulated significantly (P<0.05). Lower invasion through a basal membrane were apparent after transfection (P<0.05). Conclusions: A eukaryotic expression plasmid to cause Syk expression in lung cancer cells can obviously inhibit their invasive ability in vitro.

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.

Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line

  • Zhang, An-Mei;Fan, Ye;Yao, Quan;Ma, Hu;Lin, Sheng;Zhu, Cong-Hui;Wang, Xin-Xin;Liu, Jia;Zhu, Bo;Sun, Jian-Guo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.761-766
    • /
    • 2012
  • Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.

Induction of Apoptosis by Samgibopae-tang in Human Non-small-cell Lung Cancer Cells (인체폐암세포 NCI-H460 및 A549의 apoptosis 유발에 미치는 삼기보배탕의 영향)

  • Heo, Man-Kyu;Heo, Tae-Yool;Kim, Ki-Tak;Byun, Mi-Kwon;Kim, Jin-Young;Sim, Sung-Heum;Kim, Koang-Lock;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.473-491
    • /
    • 2007
  • Objectives : This study was designed to investigate the antiproliferative activity of the water extract of Samgibopae-tang (SGBPT) in NCI-H460 and A549 non-small-cell lung cancer cell lines Methods : In this study, we measured the subsistence, form of NCI-H460 and A549 non-small-cell lung cancer cell by hemocytometer and DAPI staining. In each cell, we analyzed DNA fragmentation. reverse transcription-polymerase chain reaction and measured activity of caspase-3, caspase-8 and caspase-9. Results and Conclusions : We found that exposure of A549 cells to SGBPT resulted in growth inhibition in a dose-dependent manner. butSGBPT did not affect the growth of NCI-H460 cells. The antiproliferative effect by SGBPT treatment in A549 cells was associated with morphological changes. SGBPT treatment partially induced the expression of DR5 cells and the expression of Faswas markedly increased in both transcriptional and translational levels in A549 cells. SGBPT treatment partially induced the expression of Bcl-2, Bcl-XL and the expression of Bid was markedly decreased in translational levels in A549 cells. However, SGBPT treatment did not affect the expression of IAP family in A549 orNCI-H460 cells. SGBPT treatment partially induced the expression of caspase-3, caspase-8, caspase-9 activity which markedly increased in a dose-dependent manners in A549 cells. The fragmental development of PARP and ${\beta}$-catenin protein was observed in A549 cells by SGBPT treatment. SGBPT treatment induced the expression of PLC-${\gamma}1$ protein which decreased in A549 cells. SGBPT treatment partially induced the expression of DFF45/ICAD which markedly increased in a dose-dependent manner in A549 cells. Taken together. these findings suggested that SGBPT-induced inhibition of human lung carcinoma did not affect NCI-H460 cell growth. However, SGBPT-induced inhibition of human lung carcinoma A549 cell growth was associated with the induction of death receptor and mitochondrial pathway. The results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of SGBPT.

  • PDF

Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+ Human Lung Adenocarcinoma-initiating A549 Cells

  • Yao, Quan;Sun, Jian-Guo;Ma, Hu;Zhang, An-Mei;Lin, Sheng;Zhu, Cong-Hui;Zhang, Tao;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2014
  • Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR-155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

Development of Animal Model for Orthotopic Non-Small Cell Lung Cancer in Nude Rat (정위성 비소세포폐암의 동물 모델의 개발)

  • 김진국;김관만
    • Journal of Chest Surgery
    • /
    • v.30 no.6
    • /
    • pp.566-572
    • /
    • 1997
  • A major obstacles to evaluation of newly-developed treatment strategy for human lung cancer has been the lack of appropriate experimental animal models. We describe a new experimental model of orthotopically-developed non-small cell lung cancer in nude rat, involving inoculation of tumor cell suspension by thoracotomy. Over 40 direct implantation to the periphery of the lung has been performed to date, each requiring less than'1 hour for completion. This model has been used to perform a series of experiments to investigate whether the rat lung and surrounding structures trapped tumor cells with 2 different non-small cell lung cancer cell lines(NCI-H46O and NCI-H1299). Every animal showed development of tumor masses, which were loculated at the periphery of the lung karenchyma and identified also by radiography. After 3 weetu of the inoculation, tumor develop meat at the mediastinal strutures were identified. The life expectancies of the victims were different between the cell lines, but were approximately 5 weeks when NCI-H46O cell line was used. This new orthotopic lung cancer model may be facilitate future studies of the new therapeutics of localized non-small cell lung cancer .

  • PDF

Pemetrexed Induces G1 Phase Arrest and Apoptosis through Inhibiting Akt Activation in Human Non Small Lung Cancer Cell Line A549

  • Wu, Dong-Ming;Zhang, Peng;Xu, Guang-Chao;Tong, Ai-Ping;Zhou, Cong;Lang, Jin-Yi;Wang, Chun-Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1507-1513
    • /
    • 2015
  • Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.

Differential Gene Expression after Adenovirus-Mediated p16 Gene Transfer in Human Non-Small Cell Lung Cancer Cells (폐암세포주에서 아데노바이러스 매개 p16 유전자 전달로 인한 유전자 발현의 변화)

  • 박미선;김옥희;박현신;지승완;엄미옥;염태경;강호일
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • For the safety evaluation of adenovirus-mediated gene transfer, we investigated differential gene expressions after transfecting adenoviral vector containing p16 tumor suppressor gene (Ad5CMV-p16) into human non-small cell lung cancer cells. In the previous study, we showed adenovirus-mediated $p16^{INK4a}$ gene transfer resulted in significant inhibition of cancer cell growth. We investigated gene expression changes after transfecting Ad5CMV-p16, Ad5CMV (null type, a mock vector) into A549 cells by using cDNA chip and oligonucleotide microarray chip (1200 genes) which carries genes related with signal transduction pathways, cell cycle regulations, oncogenes and tumor suppressor genes. We found that $p16^{INK4a}$ gene transfer down regulated 5 genes (cdc2, cyclin D3, cyclin B, cyclin E, cdk2) among 26 genes involved in cell cycle regulations. Compared with serum-free medium treated cells, Ad5CMV-p16 changed 27 gene expressions, two fold or more on oligonucleotide chip. In addition, Ad5CMV-p16 did not seem to increase the tumorigenicity-related gene expression in A549 cells. Further studies will be needed to investigate the effect of Ad5CMV-p16 on normal human cells and tissues for safety evaluation.