• 제목/요약/키워드: human neuroblastoma IMR-32

검색결과 8건 처리시간 0.021초

DNA합성 억제제가 IMR-32 세포의 c-myc 발현 및 Choline Acetyltransferase 활성도에 미치는 영향 (Effects of DNA Synthesis Inhibitors on the Expression of c-myc and the Stimulation of Choline Acetyltransferase Activity in Human Neuroblastoma Cell Line, IMR-32)

  • 이정은;조경혜
    • 대한의생명과학회지
    • /
    • 제3권1호
    • /
    • pp.11-20
    • /
    • 1997
  • 신경아세포종 세포 분화의 조절에 대한 연구는 아직 초기 단계에 불과하나 신경아세포종양의 임상적인 치료에 매우 중요한 기초가 된다. 본 연구는 신경아세포종 세포의 분화를 유도 할 수 있는 유용한 시약을 찾아내고자 하는 노력의 일환으로, 잘 알려진 DNA 합성 억제제가 신경 아세포종의 분화를 유도할 수 있는지를 살펴보고자 신경아세포종양 세포의 형태적, 생화학적 및 유전자 발현에 미치는 효과를 살펴보았다. 신경아세포종양으로부터 수립된 세포주, IMR-32 세포에 DNA 합성 억제제인 sodium butyrate, hydroxyurea, cytosine arabinoside를 각각 처리한 결과 처리하지 않은 대조군과는 달리 정상신경 세포 분화시 볼 수 있는 신경 돌기의 성장이 유도됨을 관찰할 수 있었으며 ,신경 전달 물질인 acetylcholine의 합성 효소인 choline acetyltransferase의 활성도가 현저히 증가되었다. 또한DNA합성 억제제를 처리하지 않은 IMR-32세포에서 탐지되지 않았던 c-myc 유전자의 발현이 시약 처리시 확연히 탐지됨을 관찰할 수 있었다. 이러한 실험 결과들은 DNA합성 억제제가 IMR-32세포의 성장을 억제하고 분화를 유도했음을 보여준 것이며, 어린 아이 시기에 많이 발병되는 신경아세포종양의 급속한 악성화나 전이의 억제기전을 제시해 줄 수 있으리라 생각한다.

  • PDF

Construction and analysis of painting probe for homogeneously staining regions in human neuroblastoma cell line IMR-32

  • Park, Sun-Hwa;Kim, Ho-Chung;Chun, Yong-Hyuck
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.45-50
    • /
    • 1997
  • Neuroblastoma, a pediatric malignant neoplasm of neural crest origin, has a wide range of clinical virulence. The mechanisms contributing to the development of neuroblastomas are largely unclear, but non-random chromosomal changes identified over the past years suggest the involvement of genetic alterations. Amplification of the human N-myc proto-oncogene is frequently seen either in extrachromosomal double minutes or in homogeneously staining regions (HSRs) of aggressively growing neuroblastomas. N-myc maps to chromosome 2 band 24, but HSR have never been observed at this band, suggesting transposition of N-myc during amplification. We have constructed and analyzed the region-specific painting probe for HSR in neuroblastoma IMR-32 to determine the derivative chromosomes. Microdissection was performed on HSR using an inverted microscope with the help of microglass needles and an micromanipulator. We pretreated the microdissected fragments with Topoisomerase I which catalyzes the relaxation of supercolled DNA, and performed two initial rounds of DNA synthesis with T7 DNA polymerase followed by conventional PCR to enable the reliable preparation of Fluorescent in situ hybridization probe from a single microdissected chromosome. With this method, it was possible to construct the region-specific painting probe for HSR. The probe hybridized specifically to the HSRs of IMR-32, and to 2p24, 2p13 of normal chromosome. Our results suggest there was coamplification of N-myc together with DNA of the chromosome 2p24 and 2p13. Moreover, the fluorescent signals for the amplified chromosomal regions in IMR-32 cells were also easily recognized at a Thus this painting probe can be applied to detect the similar amplification of N-myc in neuroblastoma tissue, and the probe pool for HSR may be used to identify the cancer-relevant genes.

  • PDF

Involvement of K+-Cl--Cotransport in the Apigenin-Induced Generation of Reactive Oxygen Species in IMR-32 Human Neuroblastoma Cells

  • Kim, Min-Hoo;Jeong, Choon-Sik;Yoon, Hye-Ran;Kim, Gun-Hee;Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.137-142
    • /
    • 2006
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we investigated the role of apigenin in the production of reactive oxygen species (ROS) through the modulation of activity of $K^+-Cl^-$-cotransport (KCC) in IMR-32 human neuroblastoma cells. Apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by different kinds of KCC inhibitors (calyculin-A, genistein and $BaCl_2$). These results indicate that KCC is functionally present, and activated by apigenin in the IMR-32 cells. Treatment with apigenin also induced a sustained increase in the level of intracellular ROS. The KCC inhibitors also significantly inhibited the apigenin-induced ROS generation. Taken together, these results suggest that apigenin can modulate ROS generation through the activation of a membrane ion transporter, KCC. These results further suggest that the alteration of KCC activity may play a role in the mechanism of degenerative diseases and/or carcinogenesis in neuronal tissues through the regulation of ROS production.

ECM 단백질이 IMR-32 및 SK-N-SH 세포주 신경축색생장에 미치는 영향 (Analyses of the Neurite Outgrowth and Signal Transduction in IMR-32 and SK-N-SH Cells by ECM Proteins)

  • 최윤정;김철우;허규정
    • 한국동물학회지
    • /
    • 제38권4호
    • /
    • pp.542-549
    • /
    • 1995
  • Extracellular matrix(ECM) 단백질이 SK-N-SH 및 IMR-32 세포주가 신경계 세포로 분화되는 데 미치는 영향을 조사하였다. Laminin과 collagen으로 도말한 배양기에서 7일간 배양했을 때 SK-N-SH세포는 잘 발달된 신경측색생장을 보였으나 IMR-32세포는 뚜렷한 형태변화를 나타내지 않았다. 왜 IMR-32세포가 ECM 단백질에 반응을 하지 않는가를 규명하기 위하여 ECM단백질에 의한 초기 신호전달기작을 두 세포주에서 분석하였다. ECM 단백질을 도말한 배양기에 세포를 깔았을 때 한시간 만에 tyrosine 인산화된 단백질이 두 세포 모두 증가함을 볼 수 있었다. 아울러 focal adhesion kinase(FAK)의 tyrosine 인산화도 두 세포주 모두에서 증가하였다. 이러한 결과는 두 세포주가 ECM 단백질에 의한 초기 신호전달체계가 정상임을 의미한다. 신경세포 분화과정에 증가한다고 알려진 Bcl-2 및 NSE의 량을 ECM 단백질 처리후 조사하였을 때 SK-N-SH 세포주는 두 단백질이 증가 했지만 IMR-32 세포주는 변화가 없었다. 이러한 결과는 IMR-32 세포주가 ECM 단백질에 반응하지 않는 것이 ECM 단백질에 의한 신호전달체계에 문제가 있다기 보다 신경계세포로 분화되는 데 필요한 유전인자의 발현조절에 문제가 있음을 시사한다.

  • PDF

Inhibitory Effects of Constituents of Gastrodia elata Bl. on Glutamate-Induced Apoptosis in MIR-32 Human Neuroblastoma Cells

  • Lee, Yong-Soo;Ha, Jeoung-Hee;Yong, Chul-Soon;Lee, Dong-Ung;Huh, Keun;Kang, Young-Shin;Lee, Sun-Hee;Jung, Mi-Wha;Kim, Jung-Ae
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.404-409
    • /
    • 1999
  • The inhibitory effects of the constituents of Gastrodia elata Bl. (GE) on glutamate-induced apoptosis in human neuronal cells were investigated using IMR32 human neuroblastoma cells. Glutamate (GLU) induced DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. GLU also induced a slow and sustained increase in intracellular $Ca^{2+}$ concentration. Treatment with EGTA, an extracellular $Ca^{2+}$ chelator, in a nominal $Ca^{2+}$ -free buffer solution abolished the GLU-induced intracellular $Ca^{2+}$ increase, indicating that GLU stimulated Ca2+ influx pathway in the IMR32 cells. BAPTA, an intracellualr $Ca^{2+}$ chelator, significantly inhibited the GLU-induced apoptosis assessed by the flow cytometry measuring hypodiploid DNA content indicative of apoptosis, implying that intracellular $Ca^{2+}$ rise may mediate the apoptotic action of GLU. Vanillin (VAN) and p-hydroxybenzaldehyde(p-HB), known constituents of GE, significantly inhibited both intracellular $Ca^{2+}$ rise and apoptosis induced by GLU. These results suggest that the apoptosis-inhibitory actions of the constituents of GE may account, at least in part, for the basis of their antiepileptic activities. These results further suggest that intracelluarl $Ca^{2+}$ signaling pathway may be a molecular target of the constituents of GE.

  • PDF

The Mechanism of t-Butylhydroperoxide-Induced Apoptosis in IMR-32 Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo;Huh, Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 1999
  • Apoptosis has been implicated in the pathophysiological mechanisms of various neurodegenerative diseases. In a variety of cell types, oxidative stress has been demonstrated to play an important role in the apoptotic cell death. However, the exact mechanism of oxidative stress-induced apoptosis in neuronal cells is not known. In this study, we induced oxidative stress in IMR-32 human neuroblastoma cells with tert- butylhydroperoxide (TBHP), which was confirmed by significantly reduced glutathione content and glutathione reductase activity, and increased glutathione peroxidase activity. TBHP induced decrease in cell viability and increase in DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TBHP also induced a sustained increase in intracellular $Ca^{2+}$ concentration, which was completely prevented either by EGTA, an extracellular $Ca^{2+}$ chelator or by flufenamic acid (FA), a non-selective cation channel (NSCC) blocker. These results indicate that the TBHP-induced intracellular $Ca^{2+}$ increase may be due to $Ca^{2+}$ influx through the activation of NSCCs. In addition, treatment with either an intracellular $Ca^{2+}$ chelator (BAPTA/AM) or FA significantly suppressed the TBHP-induced apoptosis. Moreover, TBHP increased the expression of p53 gene but decreased c-myc gene expression. Taken together, these results suggest that the oxidative stress-induced apoptosis in neuronal cells may be mediated through the activation of intracellular $Ca^{2+}$ signals and altered expression of p53 and c-myc.

  • PDF

Anxiolytic and Antidepressant Activities of Ginsenoside Rb1

  • Choi, Jong-Hyun;Yoon, Seo-Young;Choi, Eun-Joo;Ryu, Yim-Seon;Ko, Hong-Sook;Yim, Dong-Sool;Her, Youl;Lee, Yong-Soo;Song, Mi-Ryoung;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제15권1호
    • /
    • pp.27-33
    • /
    • 2007
  • The psychopharmacological profile of ginsenosides has not yet been confirmed systematically although various neuropharmacological activities associated with them have been investigated. In the present study, the psychological activities of Rb1 were investigated to evaluate whether it can be used in treatment or prevention of psychological disorders. Rb1 was intravenously injected at doses of O.2,2,5 and 10 mg/kg. The effects of Rb1 on the $Cl^-$ ion influx were investigated using IMR-32 human neuroblastoma cells. Moreover, locomotor activity, forced swimming activity, activity on rotating rod and activity in elevated plus-maze were tested in mice. Rb1 increased the $Cl^-$ influx into the intracell region in a dose-dependent manner. Rb1 did not cause change in behavior in total open field when locomotor activity was tested, however it increased activities, especially, such as rearing frequency in center area. Administration of Rb1 at 0.2 mg/kg significantly reduced activities on rotating rod however administration at high dosages had no effect on them. Rb1 administration decreased animal immobile time in a water chamber in a dose dependent manner, and increased the strong mobile time of animals. In conclusion, the present results demonstrate that Rb1 contributes to the psychopharmacological effects of ginseng and may be used in treatment or prevention of psychological disorders such as anxiety or depression.

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.