• Title/Summary/Keyword: human motion simulation

Search Result 182, Processing Time 0.026 seconds

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Data Creation Technique for Tracking Motionv Pattern from the VR (가상현실공간에서 이동패턴 추적을위한 데이터 생성기술)

  • Kim, Yun-Ho;Kang, Soung-You
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.309-312
    • /
    • 2005
  • Virtual reality(VR) is both one of the high-technology and main paradime in leading next genaration of 21th century. It's application spectrum is various and lead to numorous revolotion as well as transition in technical aspect. These change is a good procept of it's value and influence effect in global fields of human life. In this paper, a development method of virtual reality simulation system is presented, which is based in the shape research about VR.

  • PDF

The Effects of Different Backrest Pivot Positions on the Human Body During Reclining of the Office Chair (사무용 의자에서 등판의 회전축 위치가 틸트시 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Choi, Chun-Ho;Kim, Sa-Yup;Hong, Gyu-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, the optimal position for the backrest pivot of an office chair was investigated by evaluating its performance in terms of the lumbar support and sliding distance of the back from the backrest during tilting motions. The simulation was performed using a mathematical model, which included a human body and a chair. Forty-two backrest pivot points were selected on the sagittal plane around the hip joint of a sitting model. A motion analysis study was also performed using a prototype of an office chair (A-type) with a backrest pivot located on the hip joint of a normal Korean model and a typical office chair (B-type) with its pivot located under the seat. The simulation results showed that both the lordosis angle and the slide distance of the back were minimized when the backrest pivot was positioned close to the hip joint. The experimental results showed that the slide distance and gap between the sitter's lumbar and the backrest was smaller with the A-type than the B-type. Based on the simulation and experimental results, it can be concluded that the backrest can support the sitter's lumbar area more effectively as the pivot position for reclining approaches closer to the hip joint. In this position, the sitter can maintain a comfortable and healthy sitting posture. This paper presents the methods and guidelines for designing an office chair with ergonomic considerations.

Visualization and Workspace Analysis of Manipulator using the Input Device in Virtual Environment (가상 환경에서 입력장치를 이용한 매니퓰레이터의 작업영역 분석 및 시각화)

  • Kim Sung Hyun;Song Tae Gil;Yoon Ji Sup;Lee Geuk
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • To handle the high level radioactive materials such a spent fuel, the master-slave manipulaters (MSM) are wide1y used as a remote handling device in nuclear facilities such as the hot cell with sealed and shielded space. In this paper, the Digital Mockup which simulates the remote operation of the Advanced Conditioning Process(ACP) is developed. Also, the workspace and the motion of the slave manipulator, as well as, the remote operation task should be analyzed. The process equipment of ACP and Maintenance/Handling Device are drawn in 3D CAD model using IGRIP. Modeling device of manipulator is assigned with various mobile attributes such as a relative position, kinematics constraints, and a range of mobility. The 3D graphic simulator using the extermal input device of spare ball displays the movement of manipulator. To connect the exterral input device to the graphic simulator, the interface program of external input device with 6 DOF is deigned using the Low Level Tele-operation Interface(LLTI). The experimental result show that the developed simulation system gives much-improved human interface characteristics and shows satisfactory reponse characteristics in terms of synchronization speed. This should be useful for the development of work`s education system in the environment.

  • PDF

Numerical Simulation of Ballast Water Exchange

  • Kamada, Koichi;Minami, Kiyokazu;Shiotani, Shigeaki;Shoji, Kuniaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.157-165
    • /
    • 2006
  • In February,2004, at International Maritime Organization (IMO), LONDON, a new international convention 'International Convention fur the Control and Management of Ship's Ballast Water and Sediment 2004' was adopted. It is called 'Ballast Water Management Convention (BWM)'. Ballast water means charged seawater or fresh water in ship's special tanks (ballast tank) to keep safety navigation and ship's maneuverability. However, from 1980, it was point out the serious problem for marine ecosystem and human life that ballast water includes harmful marine species (and small organisms) and these species are also discharged along with ballast water. These species were released with discharged ballast water in water areas, where species are different from discharged ballast water. The problem is that released species increase when released species are more powerful than native species and consequently, marine ecological system is destroyed in released water area. Authors have inspected the validity of the ballast water exchange using pumping-through method that is one of the methods of ballast water management. In this paper, the numerical simulation of the motion and density of the fluid at the time of exchange of the fluid in a 2-dimensional tank using the pumping-through method was carried out by using two different type numerical methods. One method is MPS method that is one of the particle methods. Other one is Finite Different Method (FDM). Authors were compared with result of two numerical method calculations and experiment result and reported some knowledge from these results.

  • PDF

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Development of Robot Performance Platform Interoperating with an Industrial Robot Arm and a Humanoid Robot Actor (산업용 로봇 Arm과 휴머노이드 로봇 액터를 연동한 로봇 공연 플랫폼 개발)

  • Cho, Jayang;Kim, Jinyoung;Lee, Sulhee;Lee, Sang-won;Kim, Hyungtae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • For the purpose of next generation technology for robot perfomances, a RAoRA (Robot Actor on Robot Arm) structure was proposed using a robot arm joined with a humanoid robot actor. Mechanical analysis, machine design and fabrication were performed for motions combined with the robot arm and the humanoid robot actor. Kinematical analysis for 3D model, spline interpolation of positions, motion control algorithm and control devices were developed for movements of the robot actor. Preliminary visualization, simulation tools and integrated operation of consoles were constructed for the non-professionals to produce intuitive and safe contents. Air walk was applied to test the developed platform. The air walk is a natural walk close to a floor or slow ascension to the air. The RAoRA also executed a performance with 5 minute-running time. Finally, the proposed platform of robot performance presented intensive and live motions which was impossible in conventional robot performances.

Simulation of Scooped Swing in High Bar Using Lagrange's Method : A Case Study (라그랑지 방법을 이용할 철봉 몸굽혀 휘돌기 동작의 시뮬레이션)

  • Hah, Chong-Ku
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.234-240
    • /
    • 2007
  • The purpose of this paper was to architecture optimal model of the scooped swing in high bar. The scooped swing was modeled to the double pendulum and was simulated with the Lagrange's equation of motion. Lagrange's method based on a energy approaching method was implemented as a equation of motion. The subject was a national man-gymnast(age 18yrs, height 153 cut mass 48 kg) and the high bar of SPIETH company was used to measure the scooped swing. Qualisys system(six MCU-240 cameras, QTM software)was used to capture data for imaging analysis. The solution of a model and data processing were solved in Mathematica5.0. The results were as follows: First model value of maximum bar displacement was longer than experimental value, that is, 0.02 m. Second, both angular pattern of segment1(HAT) had a increasing curve but curve patterns had a different concave and convex me. Third the experimental value of maximum angular angle of segment2(total leg) had larger than model value, that is, $4^{\circ}$. Conclusively, model parameters were quasi-optimized to obtain a quasi-match between simulated and actual performances. It hopes to simulate a human model by means of integrating musculoskeletal and neuromuscular system in the future study.

Comparison of Newton's and Euler's Algorithm in a Compound Pendulum (복합진자 모형의 뉴튼.오일러 알고리즘 비교)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The Primary type of swinging motion in human movement is that which is characteristic of a pendulum. The two types of pendulums are identified as simple and compound. A simple pendulum consist of a small body suspended by a relatively long cord. Its total mass is contained within the bob. The cord is not considered to have mass. A compound pendulum, on the other hand, is any pendulum such as the human body swinging by hands from a horizontal bar. Therefore a compound pendulum depicts important motions that are harmonic, periodic, and oscillatory. In this paper one discusses and compares two algorithms of Newton's method(F = m a) and Euler's method (M = $I{\times}{\alpha}$) in compound pendulum. Through exercise model such as human body with weight(m = 50 kg), body length(L = 1.5m), and center of gravity ($L_c$ = 0.4119L) from proximal end swinging by hands from a horizontal bar, one finds kinematic variables(angle displacement / velocity / acceleration), and simulates kinematic variables by changing body lengths and body mass. BSP by Clauser et al.(1969) & Chandler et al.(1975) is used to find moment of inertia of the compound pendulum. The radius of gyration about center of gravity (CoG) is $k_c\;=\;K_c{\times}L$ (단, k= radius of gyration, K= radius of gyration /segment length), and then moment of inertia about center of gravity(CoG) becomes $I_c\;=\;m\;k_c^2$. Finally, moment of inertia about Z-axis by parallel theorem becomes $I_o\;=\;I_c\;+\;m\;k^2$. The two-order ordinary differential equations of models are solved by ND function of numeric analysis method in Mathematica5.1. The results are as follows; First, The complexity of Newton's method is much more complex than that of Euler's method Second, one could be find kinematic variables according to changing body lengths(L = 1.3 / 1.7 m) and periods are increased by body length increment(L = 1.3 / 1.5 / 1.7 m). Third, one could be find that periods are not changing by means of changing mass(m = 50 / 55 / 60 kg). Conclusively, one is intended to meditate the possibility of applying a compound pendulum to sports(balling, golf, gymnastics and so on) necessary swinging motions. Further improvements to the study could be to apply Euler's method to real motions and one would be able to develop the simulator.