• 제목/요약/키워드: human monitoring

검색결과 1,449건 처리시간 0.029초

2003년 태풍 매미로 인한 부산 연안지역의 재해특성 분석 (Disaster Characteristics Analysis at Busan Coastal Areas by Typhoon Maemi in 2003)

  • 서규우
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.25-32
    • /
    • 2004
  • We surveyed the coastal structure damage created by typhoon ‘Maemi’, which heavily struck the Korean peninsula on September 12, 2003. The survey revealed that high tides and strong winds induced by the typhoon were the main causes of the coastal damage, especially in the Busan areas. Though some experimental real-time coastal monitoring stations captured the typhoon movements at the critical time, more systematic and complete system should be implemented to save human lives and property from huge typhoon disasters.

원전의 안전성 제고를 위한 CFMS의 인간공학적 설계 검토 (Human Factors Design Review of CFMS for Improving the Safety of Nuclear Power Plant)

  • 이용희;정광태
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.201-208
    • /
    • 1997
  • In order to improve the safety of nuclear power plant, we performed a human factors review for the CFMS(Critical Function Monitoring system) design of nuclear power plant. Three works were performed in this study. In first work, we developed human factors engineering program plan(HFEPP) and human factors engineering verification and validation plan (HFE-V & V plan) to effectively perform CFMS design and review. In second work, we identified human engineering discrepancies(HEDs) for CFMS design through human factors design review and proposed those resolutions. In the third work, we developed the evaluation and management methodology for identified KEDs. Methodology developed in this study can be used in other complex system as well as in CFMS design review.

  • PDF

수치영상에 의한 인체형상의 3차원 정확도 분석 (The 3 Dimension Accuracy Analysis of Human Body Using the Digital Image)

  • 강준묵;배상호;주영은
    • 대한공간정보학회지
    • /
    • 제5권2호
    • /
    • pp.111-119
    • /
    • 1997
  • 인체에 대한 정밀측정과 분석체계의 구축은 인체공학 연구에 중요한 의미를 지니고 있다 본 연구는 인체형상 모니터링을 위한 수치영상의 정확도 향상에 관한 연구로서 다양한 기하학적 조건에 따른 수치영상의 정확도를 분석하고 도출한 최적의 촬영조건을 인체형상에 적용하였다. 표준편차 1mm 이내의 3차원 수치자료를 획득하여 다양한 공간분석과 3차원 모니터링을 수행함으로써 인체공학 분야에 기초자료를 제공할 것으로 기대된다.

  • PDF

철도산업의 안전업무 종사자 인적요인 관리를 위한 검토모델 연구 (A Study on Program Review Model for Human Factors in Railway Industry)

  • 곽상록;왕종배;박찬우;최돈범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.2040-2044
    • /
    • 2008
  • Recently, many safety measures are developing for the prevention of human error, which is main factors of railway accident. For the efficient management of human factors, many expertise on design, conditions, safety culture and staffing are required. But current safety management activities on safety critical works are focused on training, due to the limited resource and information. In order to establish railway human factors management, a systematic review model is required. Based on system engineering and nuclear industry model, a program review model is proposed in this study. The model includes operating experience review, task analysis, staffing and qualification, human reliability analysis, huma-system interface design, procedure development, training program, verification and validation, implementation and monitoring. Results can be applied for the review of safety measures relating to human factors.

  • PDF

A MEMS/NEMS sensor for human skin temperature measurement

  • Leng, Hongjie;Lin, Yingzi
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.53-67
    • /
    • 2011
  • Human state in human-machine systems highly affects the overall system performance, and should be detected and monitored. Physiological cues are essential indicators of human state and useful for the purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to detect human state. The paper is presented in three parts. The first part is to analyze the relationship between human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography are closely related with human state. They can be measured through human-machine contact surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement. The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement. Experiments were performed to verify the performance of the Nano-Skin in temperature measurement. Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on human-machine contact surfaces to detect human state.

생태수질기준설정을 위한 대상물질의 생태위해성 평가 (Ecological Risk Assessment of Chemicals of Concern for Initiation of Ecorisk-based Water Quality Standards in Korea)

  • 안윤주;남선화;김용화
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.592-597
    • /
    • 2008
  • Current water quality standard (WQS) in Korea is based on the protection of human health, not considering the protection of aquatic organisms. Most of chemicals can be toxic to ecological biota as well as human. Health of aquatic biota is closely related to the human health via food chain, therefore ecological risk based-WQS needs to be developed to protect the aquatic ecosystem. In this study, we selected the 31 chemicals in the Project entitled 'Development of integrated methodology for evaluation of water environment'. The methodology for calculating water quality criteria was derived from the Australian and New Zealand processes for deriving guideline trigger value for aquatic ecosystem. The available ecotoxicity data were collected from US EPA's ECOTOXicology Database (ECOTOX), TOX-2000 Database, European Chemicals Bureau (ECB)'s International Uniform Chemical Information Database (IUCLID) and Environmental Protection Agency (US EPA)'s report 'Ambient Water Quality Criteria (AWQC)'. The aquatic toxicity data for the Korean species were selected for risk assessment to reflect the Korean water environment. The monitoring values were calculated from the water quality monitoring data four main Korean rivers. We suggested the order of priorities of chemicals based on ecological risk assessment. We expect that these results can be useful information for establishing the WQS for the protection of aquatic ecosystem.

체온측정용 온도 센서 및 모니터링 텔레메트리 시스템 구현 (Development for body temperature sensor and monitoring telemetry system)

  • 이정현;성기웅;김명남;조진호
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.435-442
    • /
    • 2010
  • Typically, the vital signs that are representing the state of human body, are the body temperature, sphygmus, respiration and blood pressure. The body temperature is the result of metabolic regulation and human steady-state body temperature is maintained from 35.9 to $37.4^{\circ}C$ by heat regulatory center. The body temperature is indicative of infection and especially it should be monitored to requiring intensive care patients or after surgical patients. But, measuring of body temperature to a heavy workload on nursing staff has been recognized. And, the health service of nurse is limited by simple tasks such as the measurement and record of vital sign. In this paper, the body temperature monitoring telemetry system was proposed to prove the recoding and transmission of body temperature patch system according the standard(ISO TS11073-92001). We proposed the transmission protocol to suit the MFER(medical waveform format encoding rules). The telemetry patch system was implemented and it was verified by experiments.

Development and Evaluation of a SYBR Green-Based, Real-time Polymerase Chain Reaction for Rapid and Specific Detection of Human Coxsackievirus B5

  • Cho, Kyu Bong
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.302-309
    • /
    • 2020
  • Human Coxsackievirus B5 (HuCoxV-B5) infection has been associated with various diseases such as myocarditis, aseptic meningitis, hand-foot-and mouth-disease, and insulin-dependent diabetes. HuCoxV-B5 is a virus transmitted through the fecal-oral route and is detected in clinics, aquatic environments, food, shellfish, etc. and is one of the more important viruses in public health because of its incidence rate reported worldwide. In this study, a combination of SYBR Green-based real-time PCR primers for molecular diagnosis including monitoring of HuCoxV-B5 was selected and the optimal reaction conditions were established. Compared with the previously reported TaqMan probe-based real-time PCR method, assessments including a sample applicability test were performed. Results showed that the real-time PCR method developed in this study was suitable for a molecular diagnostic technique for detecting HuCoxV-B5. This study is expected to contribute to efforts in responding to safety accidents in public health because the proposed method facilitates rapid diagnosis of clinical patients. It can also be used as a specific monitoring tool of HuCoxV-B5 in non-clinical areas such as aquatic environments among others.

현대의 고도화, 자동화된 시스템이 파생한 휴먼에러에 관한 이론적 고찰을 통한 리스크 대응전략 설정 (A Study on Countermeasure Strategy on Risk of Human Errors driven by Advanced and Automated Systems Through Consideration of Related Theories)

  • 신인재
    • 한국안전학회지
    • /
    • 제29권1호
    • /
    • pp.86-92
    • /
    • 2014
  • This paper provides an integrated view on human and system interaction in advanced and automated systems, which adopting computerized multi-functional artifacts and complicated organizations, such as nuclear power plants, chemical plants, steel and semi-conduct manufacturing system. As current systems have advanced with various automated equipments but human operators from various organizations are involved in the systems, system safety still remains uncertain. Especially, a human operator plays an important role at the time of critical conditions that can lead to catastrophic accidents. The knowledge on human error helps a risk manager as well as a designer to create and control a more credible system. Several human error theories were reviewed and adopted for forming the integrated perspective: gulf of execution and evaluation; risk homeostasis; the ironies of automation; trust in automation; design affordance; distributed cognition; situation awareness; and plan delegation theory. The integrated perspective embraces human error theories within three levels of human-system interactions such as affordance level, psychological logic level and trust level. This paper argued that risk management process should dealt with human errors by providing (1) reasoning improvement; (2) support to situation awareness of operators; and (3) continuous monitoring on harmonization of human system interaction. This approach may help people to understand risk of human-system interaction failure characteristics and their countermeasures.

A New Emergency-Handling Mechanism based on IEEE 802.15.4 for Health-Monitoring Applications

  • Ranjit, Jay Shree;Pudasaini, Subodh;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.406-423
    • /
    • 2014
  • The recent advances in wireless communication systems and semiconductor technologies are paving the way for new applications over wireless sensor networks. Health-monitoring application (HMA) is one such emerging technology that is focused on sensing and reporting human vital signs through the communication network comprising sensor devices in the vicinity of the human body. The sensed vital signs can be divided into two categories based on the importance and the frequency of occurrence: occasional emergency signs and regular normal signs. The occasional emergency signs are critical, so they have to be delivered by the specified deadlines, whereas the regular normal signs are non-critical and are only required to be delivered with best effort. Handling the occasional emergency sign is one of the most important attributes in HMA because a human life may depend on correct handling of the situation. That is why the underlying network protocol suite for HMA should ensure that the emergency signs will be reported in a timely manner. However, HMA based on IEEE 802.15.4 might not be able to do so owing to the lack of an appropriate emergency-handling mechanism. Hence, in this paper, we propose a new emergency-handling mechanism to reduce the emergency reporting delay in IEEE 802.15.4 through the modified superframe structure. A fraction of an inactive period is modified into three new periods called the emergency reporting period, emergency beacon period, and emergency transmission period, which are used opportunistically only for immediate emergency reporting and reliable data transmission. Extensive simulation is performed to evaluate the performance of the proposed scheme. The results reveal that the proposed scheme achieves improved latency and higher emergency packets delivery ratio compared with the conventional IEEE 802.15.4 MAC.