• Title/Summary/Keyword: human membrane proteins

Search Result 200, Processing Time 0.022 seconds

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF

Structure Prediction of Gasdermin a Receptor by Homology Modelling

  • Subathra Selvam
    • Journal of Integrative Natural Science
    • /
    • v.16 no.3
    • /
    • pp.97-102
    • /
    • 2023
  • The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. A role in the regulation of cell proliferation and/or differentiation is suggested by the differentiation status-specific expression of gasdermin proteins in epithelial tissues. One of the GSDM protein is Gasdermin A (GSDMA), which decreased in stomach and esophageal cancers, suggesting a tumor suppressor role. GSDMA receptor antagonists have been researched as potential treatments for inflammatory diseases and baldness. GSDMA's significance in a wide range of disorders makes it an important therapeutic target. As a result, homology modelling of the GSDMA receptor was undertaken in the current study using the crystal structures of Mus musculus (GSDMA3), Human gasdermin D (GSDMD), and Murine gasdermin D (murine GSDMD). The best model was chosen based on the validation results after 20 models were developed utilising single template-based approaches. The generated structures can be used for further binding site and docking studies in the future.

Cell Cycle Arrest and Apoptotic Induction by MCS-C2 in Human Leukemia HL-60 Cells

  • Kim, Min-Kyoung;Lee, Chul-Hoon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.297-301
    • /
    • 2004
  • The purpose of the present study was to investigate the anti-proliferative and apoptotic effects of MCS-C2, a novel analogue of toyocamycin and sangivamycin, in human promyelocytic leukemia (HL-60) cells. When treated with MCS-C2, inhibited proliferation associated with cell cycle arrest and apoptotic induction was found in the HL-60 cells in a concentration-dependent and time-dependent manner. This apoptotic induction was associated with the cleavage of Bid and a release of cytochrome c from mitochondria into the cytosol, followed by the activation of caspase-3 and inactivation of poly (ADP-ribose) polymerase (PARP). However, there was no significant change in any other mitochondrial membrane proteins, such as Bcl-2 and Bax. Consequently, the current findings suggest that the mitochondrial pathway was primarily involved in the MCS-C2-induced apoptosis in the human promyelocytic leukemia HL-60 cells.

  • PDF

Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

  • Tian, Yongmei;Cai, Mingjun;Xu, Haijiao;Ding, Bohua;Hao, Xian;Jiang, Junguang;Sun, Yingchun;Wang, Hongda
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.592-597
    • /
    • 2014
  • The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

Induction of Apoptotic Cell Death by a Ceramide Analog in PC-3 Prostate Cancer Cells

  • Oh, Ji-Eun;So, Kwang-Sup;Lim, Se-Jin;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1140-1146
    • /
    • 2006
  • Ceramide analogs are potential chemotherapeutic agents. We report that a ceramide analog induces apoptosis in human prostate cancer cells. The ceramide analog induced cell death through an apoptotic mechanism, which was demonstrated by DNA fragmentation, the cleavage of poly ADP ribose polymerase (PARP), and a loss of membrane asymmetry. Treating the cells with ceramide analog resulted in the release of various proapoptotic mitochondrial proteins including cytochrome c and Smac/DIBLO into the cytosol, and a decrease in the mitochondrial membrane potential. In addition, the ceramide analog decreased the phospho-Akt and phospho-Bad levels. The expression of the antiapoptotic Bcl-2 decreased slightly with increasing Bax to Bcl-2 ratio. These results suggest that the ceramide analog induces apoptosis by regulating multiple signaling pathways that involve the mitochondrial pathway.

New Protein Extraction/Solubilization Protocol for Gel-based Proteomics of Rat (Female) Whole Brain and Brain Regions

  • Hirano, Misato;Rakwal, Randeep;Shibato, Junko;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Iwahashi, Hitoshi;Masuo, Yoshinori
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2006
  • The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using precast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, ingel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

Effect of MBCP block as carrier of rhBMP-2 in combination with ePTFE membrane on bone formation in rat calvarial defects

  • Shin, Chul-Woo;Cho, Kyoo-Sung;Jung, Sung-Won;Kim, Chang-Sung;Choi, Seong-Ho;Yun, Jeong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.325-334
    • /
    • 2008
  • Purpose: The carrier used as delivery agent for bone morphogenetic proteins(BMPs) should also act as a scaffold for new bone formation. Moreover, bone formation should be predictable in terms of the volume and shape. This study examined the osteogenic effect of macroporous biphasic calcium phosphate (MBCP) block combined with ePTFE membrane as a carrier for recombinant human bone morphogenetic proteins (rhBMP-2). In addition, the additive effect of ePTFE membrane on bone formation was evaluated. Materials and Methods: Eight-millimeter critical sized calvarial defects were created surgically in 28 male Sprague-Dawley rats. The animals were divided into 2 groups containing 14 animals each. The defects were treated with either rhBMP-2/MBCP block (rhBMP-2/MBCP group) or rhBMP-2/MBCP block/ePTFE membrane (rhBMP-2/MBCP/ePTFE group). A disc-shaped MBCP block (3 mm height and 8 mm diameter) was used as the carrier for the rhBMP-2 and ePTFE membrane was used to cover the rhBMP-2/MBCP block. The histologic and histometric parameters were used to evaluate the defects after 2- or 8-week healing period (7 animals/group/healing interval). Results: The level of bone formation in the defects of both groups was significantly higher at 8 weeks than that at 2 weeks (P < 0.05). The ePTFE membrane has no additional effect compared with the rhBMP-2/MBCP block only. However, at 8 weeks, rhBMP-2/MBCP/ePTFE group showed more even bone formation on the top of the MBCP block than the rhBMP-2/MBCP group. Conclusion: These results suggest that the ePTFE membrane has no additive effect on bone formation when a MBCP block is used as a carrier for rhBMP-2.

Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are decreased in human apoptotic embryos

  • Lee, Hyo-Jin;Kim, Jin-Hee;Yang, Hyun-Won
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Fragmentation in human pre-implantation embryos has been suggested as the process of apoptosis. We have previously demonstrated a direct relationship between the increased reactive oxygen species (ROS) and apoptosis in human pre-implantation embryos. ROS is known to suppress the function of mitochondria in which steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are presented. Therefore, the purpose of this study was to examine the expression of StAR and PBR in human pre-implantation embryos and to evaluate whether reduction of these proteins is associated with apoptosis. Apoptosis was detected by annexin V-fluorescein isothiocyanate (FITC) and mitochondrial membrane potential was measured by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1). Immunofluorescence staining and Western blotting were applied to examine the expression of StAR and PBR in the embryos. Lipid droplets in the embryos were stained with Oil Red O. The fragmented pre-implantation embryos were stained with annexin V-FITC, but not the normal ones. The mitochondria with active membrane potential were present less in the fragmented embryos compared with the non-fragmented embryos. We also confirmed that both StAR and PBR were expressed in the embryos and their expression levels were lower in the fragmented ones. In addition, the number and size of lipid droplets were increased in the fragmented embryos. The present study provides evidence that reduction of StAR and PBR in human pre-implantation embryos is associated with an increase in the lipid droplets leading to apoptosis.

Cloning and Expression of Lactadherin Gene from Korean Women (한국 여성의 Lactadherin 유전자 Cloning과 발현 연구)

  • Yom, Heng-Cherl
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.253-261
    • /
    • 2007
  • Lactadherin is a glycoprotein of human milk fat globule membrane that binds to mucin and butyrophilin forming the protein complex. Especially, mucin and lactadherin in human milk efficiently protect infants with poor immune functions right after birth from infections by microorganisms and play important roles for their early survival, growth and development. Lactadherin inhibits the propagation and growth of rotavirus that is a global pathogen causing infants' diarrhea. Recently this protein was known to promote neovascularization and its deficiency related to develop Alzheimer's disease. In this study, the basic biochemical and physiological aspects of lactadherin were investigated. Messenger RNAs were isolated from mammary tissues from Korean women patients to clone a 1.2 kb cDNA and sequenced its DNA to determine its amino acid sequences. The cDNA was cloned to express its 43 kD protein in E. coli, which was confirmed by Western blot. The recombinant protein was purified and injected to 2 rabbits to raise antibodies against it. The semi-purified milk fat globule membrane proteins from Korean women was analyzed by Western blot using the rabbit antibody to give 70, 55, 46, 30 kD bands. Also several polymorphism and SNPs of lactadherin gene from Korean women were observed compared with those of Caucasian women.

  • PDF

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF