• 제목/요약/키워드: human membrane proteins

검색결과 200건 처리시간 0.037초

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권3호
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

The AP-3 Clathrin-associated Complex Is Essential for Embryonic and Larval Development in Caenorhabditis elegans

  • Shim, Jaegal;Lee, Junho
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.452-457
    • /
    • 2005
  • The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the ${\mu}3$, ${\sigma}3$, ${\beta}3$ and ${\delta}$ genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans ${\mu}3$, ${\sigma}3$, ${\beta}3$ and d genes are essential for embryogenesis and larval development.

The Preventive Effects of Bcl-2 and $Bcl-_{XL}$ on Lovastatin-induced Apoptosis of C6 Glial Cells

  • Choi, Jae-Won;Lee, Jong-Min;Oh, Young-Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권5호
    • /
    • pp.235-239
    • /
    • 2002
  • It has been reported that lovastatin induced cell death and suppressed proliferation in various cell lines. In this study, we examined whether the cytotoxic effects of lovastatin could be prevented by Bcl-2 or $Bcl-_{XL}$ in C6 glial cells. Overexpression of human Bcl-2 or $Bcl-_{XL}$ prevented lovastatin $(25{\mu}M)-induced$ changes such as DNA fragmentation, chromatin condensation, disruption of cell membrane, and cleavage of poly (ADP-ribose) polymerase. Lovastatin-induced inhibition of cell proliferation was unaffected by Bcl-2 or $Bcl-_{XL}$ overexpression. These results suggest that Bcl-2 and $Bcl-_{XL}$ can prevent lovastatin-induced apoptosis in C6 glial cells, though the inhibition of proliferation remains unaffected by these proteins.

인체 전립선 암세포에서 Alkylating Agent인 N-methyl-N'-nitro- N-nitrosoguanidine에 의한 Apoptosis유발 (Induction of Apoptosis by N-methyl-N'-nitro-N-nitrosoguanidine, an Alkylating Agent, in Human Prostate Carcinoma Cells)

  • 박철;최병태;이원호;최영현
    • Toxicological Research
    • /
    • 제19권2호
    • /
    • pp.91-98
    • /
    • 2003
  • Alkylating agents form alkylated base adducts in the DNA and cause DNA lesions leading to cell killing. In this study, we investigated the mechanism of apoptosis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in PC-3 and DU145 human prostate carcinoma cell lines. MNNG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner to a similar extent in both cell lines. This anti-proliferative effect of PC-3 and DU145 cells by MNNG was associated with morphological changed such as membrane shrinking, cell rounding up and formation of apoptotic bodies. MNNG treatment also induced a proteolytic cleavage of specific target proteins such as poly(ADP-ribose) polymerase (PARP) and $\beta$-catenin proteins in DU145 cells but in PC-3 cells. Furthermore, we observed an increase of proapoptotic protein Bax family expression and a decrease of antiapoptotic protein Bcl-2 family by MNNG treatment in a concentration-dependent manner MNNG also induced a proteolytic activation of caspase-3 and -9, which is believed to play a central role in the apoptotic signaling pathway.

두경부암 세포주에서 상피성장인자수용체 타이로신 카이네이즈 억제제인 gefitinib의 성장억제에 관한 연구 (Growth inhibition in head and neck cancer cell lines by gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor)

  • 송승일;김명진
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제35권5호
    • /
    • pp.287-293
    • /
    • 2009
  • Cell survival is the result of a balance between programmed cell death and cellular proliferation. Cell membrane receptors and their associated signal transducing proteins control these processes. Of the numerous receptors and signaling proteins, epidermal growth factor receptor (EGFR) is one of the most important receptors involved in signaling pathways implicated in the proliferation and survival of cancer cells. EGFR is often highly expressed in human tumors including oral squamous cell carcinomas, and there is increasing evidence that high expression of EGFR is correlated with poor clinical outcome of common human cancers. Therefore, we examined the antiproliferative activity of gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in head and neck cancer cell lines. SCC-9, KB cells were cultured and growth inhibition activity of gefitinib was measured with MTT assay. To study influence of gefitinib in cell cycle, we performed cell cycle analysis with flow cytometry. Western blot was done to elucidate the expression of EGFR in cell lines and phosphorylation of EGFR and downstream kinase protein, Erk and Akt. Significant growth inhibition was observed in SCC-9 cells in contrast with KB cells. Also, flow cytometric analysis showed G1 phase arrest only in SCC-9 cells. In Western blot analysis for investigation of EGFR expression and downstream molecule phosphorylation, gefitinib suppressed phosphorylation of EGFR and downstream protein kinase Erk, Akt in SCC-9. However, in EGFR positive KB cells, weak expression of active form of Erk and Akt and no inhibitory activity of phosphorylation in Erk and Akt was observed. The antiproliferative activity of gefitinib was not correlated with EGFR expression and some possibility of phosphorylation of Erk and Akt as a predictive factor of gefitinib response was emerged. Further investigations on more reliable predictive factor indicating gefitinib response are awaited to be useful gefitinib treatment in head and neck cancer patients.

Expressed Sequence Tag Analysis of the Erythrocytic Stage of Plasmodium berghei

  • Seok, Ji-Woong;Lee, Yong-Seok;Moon, Eun-Kyung;Lee, Jung-Yub;Jha, Bijay Kumar;Kong, Hyun-Hee;Chung, Dong-Il;Hong, Yeon-Chul
    • Parasites, Hosts and Diseases
    • /
    • 제49권3호
    • /
    • pp.221-228
    • /
    • 2011
  • Rodent malaria parasites, such as Plasmodium berghei, are practical and useful model organisms for human malaria research because of their analogies to the human malaria in terms of structure, physiology, and life cycle. Exploiting the available genetic sequence information, we constructed a cDNA library from the erythrocytic stages of P. berghei and analyzed the expressed sequence tag (EST). A total of 10,040 ESTs were generated and assembled into 2,462 clusters. These EST clusters were compared against public protein databases and 48 putative new transcripts, most of which were hypothetical proteins with unknown function, were identified. Genes encoding ribosomal or membrane proteins and purine nucleotide phosphorylases were highly abundant clusters in P. berghei. Protein domain analyses and the Gene Ontology functional categorization revealed translation/protein folding, metabolism, protein degradation, and multiple family of variant antigens to be mainly prevalent. The presently-collected ESTs and its bioinformatic analysis will be useful resources to identify for drug target and vaccine candidates and validate gene predictions of P. berghei.

Human Aortic Smooth Muscle Cell에서 하엽(荷葉)의 항동맥경화 활성 연구 (Nelumbo nucifera Leaves Inhibit HASMC Proliferation and Migration Activated by TNF-$\alpha$)

  • 김선모;윤현정;이효승;원찬욱;김재은;박선동
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.77-86
    • /
    • 2009
  • Objectives : The proliferation and migration of human aortic smooth muscle cells (HASMC) in response to activation by various stimuli plays a critical role in the initiation and development of atherosclerosis. This study was conducted to examine the effects of Nelumbo nucifera leaves (NNL) on the proliferation and migration of HASMC. Additionally, the mechanisms involved in any observed effects were also evaluated. Methods : Apoptotic cells were measured by staining with FITC-labeled annexin V, followed by flow cytometric analysis. The expression level of apoptosis related proteins was confirmed by western blot. And MMP-9 activity was measured by gelatin zymography and MMP-9 expression was measured by ELISA Results : NNL completely inhibited the proliferation of HASMC via induction of the expression of apoptotic proteins including annexin V, cleaved poly ADP-ribose polymerase (PARP), and caspase-3 and -8. NNL treatment resulted in the release of cytochrome c into cytosol, a loss of mitochondrial membrane potential, a decrease in Bcl-2 and Bcl-xL and an increase in Bax expression. NNL also blocked HASMC migration via suppression of MMP-9. Conclusions : Taken together, these results indicate that NNL has the potential for use as an anti-artherosclerosis agent.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Calpains and Apoptosis

  • Tagliarino, Colleen;Pink, John J.;Boothman, David A.
    • Animal cells and systems
    • /
    • 제5권4호
    • /
    • pp.267-274
    • /
    • 2001
  • Calpains are a family of cysteine proteases existing primarily in two forms designated by the $Ca^{2+}$ concentration needed for activation in vitro, $\mu$-calpain (calpain-I) and m-calpain (calpain-II). The physiologica1 roles of calpains remain unclear. Many groups have proposed a role for calpains In apoptosis, but their patterns of activation are not well characterized. Calpains have been implicated in neutrophil apoptosis, glucocorticoid-induced thymocyte apoptosis, as well as many other apoptotic pathways. Calpain activation in apoptosis is usually linked upstream or downstream to caspase activation, or in a parallel pathway alongside caspase activation. Calpains have been suggested to be involved in DNA fragmentation (via endonuclease activation), but also as effector proteases that cleave cellular proteins involved in DNA repair, membrane associated proteins and other homeostatic regulatory proteins. Recently, our laboratory demonstrated $\mu$-calpain activation in NAD(P)H: quinone oxidoreducatse 1 (NQO1)-expressing cells after exposure to $\beta$-lapachone, a novel quinone and potential chemo- and radio-therapeutic agent. Increased cytosolic $Ca^{2+}$ in NQO1-expressing cells after $\beta$-lapachone exposures were shown to lead to $\mu$-calpain activation. In turn, $\mu$-calpain activation was important for substrate proteolysis and DNA fragmentation associated with apoptosis. Upon activation, $\mu$-calpain translocated to the nucleus where it could proteolytically cleave PARP and p53. We provided evidence that $\beta$-lapachone-induced, $\mu$-calpain stimulated, apoptosis did not involve any of the known caspases; known apoptotic caspases were not activated after $\beta$-lapachone treatment of NQO1-expressing cells, nor did caspase inhibitors have any effect on $\beta$-1apachone-induced cell death. Elucidation of processes by which $\beta$-1apachone-stimulated $\mu$-calpain activation and calpains ability to activate endonucleases and induce apoptosis independent of caspase activity will be needed to further develop/modulate $\beta$-lapachone for treatment of human cancers that over-express NQO1.

  • PDF

폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포 (Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae)

  • 권혁영;박연진;표석능;이동권
    • 미생물학회지
    • /
    • 제37권3호
    • /
    • pp.221-227
    • /
    • 2001
  • 열충격 단백질(heat shock protein: HSP)은 변성된 단백질의 응집을 방지하여 가혹한환경에서 병원균의 생존을 증가시킨다. 세균에 알코을 stress를 가하면 다량의 DnaK와 GronEL이 유도되지만 폐렴구균에서는 DnaK와 GroEL이 전혀 유도되지 않는 대신 알코올탈수소효소(alcohol dehydrogenase : ADH)가 유도되었다. 이런 특성은 폐렴구균 ADH가 HSP처럼 chaperone 기능을 수행라고 있을 가능성을 제시하고 있으므로 본 연구에서는 일차적으로 ADH 유전자를 확인하고 ADH 의 면역특성 및 세포내 분포를 측정하였다. 폐렴구균 ADH는 이질아메바 ADH2 및 대장균 ADH 와 높은 유사성을 나타냈으며 883 개의 아미노산으로 구성된 등전점 6.09의 단백질로 추정된다. 그러나 폐렴구균 ADH와 유사성이 높은 대장균, 유산균 및 황색포도상구균의 용해액을 폐렴구균 ADH 항체와 immunoblot을 실시하였을 때 전혀 반응하지 않았다. 또한 세포질, membrane, periplasm에 있는 단백질 분획 및 폐렴구균 배양 상등액을 ADH 항체와 immune blot을 실시하였을 때 ADH 는 열충격에 관계없이 세포 밖으로 분비되는 단백질임을 확인하였다. 이런 결과는 폐렴구균 ADH가 진단용항원 및 백신으로 개발될 수 있는 가능성을 제시하고 있다.

  • PDF