• Title/Summary/Keyword: human gingival fibroblasts

Search Result 144, Processing Time 0.026 seconds

Biological Characteristics of Human Periodontal Ligament Cells (치주인대 세포의 생물학적 특성)

  • Park, Gwi-Woon;Shin, Hyung-Shik;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.291-303
    • /
    • 1997
  • Periodontal ligament cells may have a role in the regulation of hard and soft periodontal tissues, but their specific function has not yet to be determined. To evaluate further their role in periodontal regeneration, they were examined for osteoblast-like behavior. Periodontal ligament cells and gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator, and as a measure of cell characterization, it was examined that the morphology, alkaline phosphatase activity, collagen synthesis, and immunocytochemistry for osteonectin, osteocalcin, and collagen type I. Healthy periodontal ligament cells has more osteoblastic-like cell property in alkaline phosphatase activity. and collagen synthesis than gingival fibroblast. Immunocytochemistry localization explained that calcitonin were expressed in periodontal ligament cells only, and osteonectin and type I collagen were produced in both cells simultaneously. This results indicate that the growth characteristics of periodontal ligament cells and gingival fibroblasts exhibit some differences in proliferative rates and biochemical synthesis. The differences may help to calrify the role such cells play in the regenearation of periodontal tissues.

  • PDF

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae;Choi, Hyun-Jung;Lee, Heesu;Lee, Jung-Woo;Weber, Hans-Peter;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system (나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석)

  • Cho, Joon Youn;Lee, Richard sungbok;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.145-157
    • /
    • 2020
  • Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

Effect of Tetracycline Analogues on The Activity of Matrix Metalloproteinase-3 in Gingival Fibroblasts (테트라사이클린계 약물이 치은섬유아세포내 MMP-3의 활성도에 미치는 영향)

  • Cho, Jong-Hee;Kim, Sang-Mok;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.677-693
    • /
    • 1999
  • Extracellular matrix component is degraded by enzymes of thematrix metalloproteinases(MMPs). MMPs are produced by both hemopoietic and structural cells. Increased activity of MMP-3 in periodontium is strongly associated with inflammatory periodontal disease. The purpose of the present study was to determine the effect of tetracycline analogues on the activity of MMP-3. Tetracycline-HCl, doxycycline-HCl, and minocycline-HCl were applied to huamn gingival fibroblasts at various concentrations of 10, 25, 50, 100, 200${\mu}g$/ml, and 1 hour later IL-$1{\beta}$ of 25ng/ml was added. After incubation for 24 hours the cells were reacted by enzyme-linked immunosorbent assay using proMMP-3 ELISA kit. The optical density was measured by microwell plate reader at 450nm. The relative activity of MMP-3 was calculated as the percentage of the optical density of each experimental group to that of the control. The difference of the optical density and the relative activity of MMP-3 between the experimental groups and the control wasstatistically analyzed by one way ANOVA. The results were as follows: 1. Tetracycline-HCl showed the tendency to inhibit the activity of MMP-3 at the concentration lower than 25${\mu}g$/ml, but increased significantly the activity of MMP-3 at the concentration of 200${\mu}g$/ml(p<0.05). 2. Doxycycline-HCl inhibited significantly the activity of MMP-3 at the concentration lower than 100${\mu}g$/ml, but increased significantly the activity of MMP-3 at the concentration of 200${\mu}g$/ml(p<0.05). 3. Minocycline-HCl inhibited the activity of MMP-3 at the concentration in the range of 10 to 200${\mu}g$/ml. Within the limit of the present study, the above results suggested that the low concentration of tetracycline analogues could inhibit the activity of MMP-3 induced by IL-$1{\beta}$ in human gingival fibroblasts.

  • PDF

ROLE OF FIBROBLASTS IN ORGANOTYPIC CULTURES OF IMMORTALIZED HUMAN ORAL KERATINOCYTES (섬유모세포의 종류에 따른 불멸화된 구강 각화세포의 삼차원적 배양에 관한 연구)

  • Cheong, Jeong-Kwon;Yoon, Kyu-Ho;Kim, Eun-Cheol
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • Objective: In organotypic culture of immortalized human oral keratinocytes (IHOK), the change of the growth and differentiation was investigated according to the fibroblast type and the involvement of mitogen-activated protein (MAP) kinase. Materials & Methods: IHOK was cultured three dimensionally with gingival fibroblast (GF), dermal fibroblast (DF) and immortalized gingival fibroblast (IGF). We characterized biologic properties of three dimensionally reconstructed IHOK by histological, immunohistochemical, and Western blot analysis. We also investigated whether MAP kinase pathway was involved in epithelial-mesenchymal interaction by Western blot analysis. Results: The best condition of three dimensionally cultured IHOK was the dermal equivalent consisting of type I collagen and IGF. IGF increased the expression of more proliferating cell nuclear antigen (PCNA), involucrin than GF and DF in response to co-culture with IHOK. Extracellularly regulated kinase (ERK) pathway was activated in organotypic co-culture with IGF. Conclusion: The organotypic co-culture of IHOK with dermal equivalent consisting of type I collagen and IGF resulted in excellent morphologic and immunohistochemical characteristics and involved ERK pathway. The epithelial-mesenchymal interaction was activated according to the fibroblast type.

Attachment of Human Gingival Fibroblasts to Commercially Pure Titanium Surfaces with Different Instruments;A comparative Study in Vitro (기구조작에 따른 순수 타이타늄 표면 변화와 치은 섬유아 세포 부착에 관한 연구)

  • Seo, Sung-Chan;Song, In-Taeck;Lim, Jeong-Su;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.607-621
    • /
    • 1999
  • This study examined the human fibroblasts cell attachment to commercially pure titanium surface which had been instrumented by 3 types of periodontal instruments. Commercially pure titanium plates were uniformly scaled using plastic, stainless steel, titanium curette. these all experimental groups 65 undirectional strokes with the designated curettes. Alteration of the surfaces due to instrumentation was evaluated by Form Talysurf(R) and reported as Ra value(mean surface roughness). Then other experimental groups were immersed in a cell suspension of human gingival fibroblasts($1{\times}10^5$ cell/ml). After 3 days of culture, cell attachment and morphology was observed by SEM, and attached cell were counted by Hemocytometer. A significant difference in mean Ra value was observed for surface instrumented by metal curette compared to either control surface or surface instrumented by the plastic curette(P<0.01). No stastically significant difference was noted between control surface and those instrumented by the plastic curette. SEM observation showed that cell morphology and attachment to the commercially pure titanium plate was similar appearance on the all experimental groups. Experimental groups instrumented by titanium curette and stainless steel curette were more attached cell number than control group, but experimental group instrumented by plastic curette were similar with control groups(P<0.01). In summary, metal curette produced an significant alteration of the commercially pure titanium surface and more favorable surface topography for cell attachment. Otherwise plastic curette was insignificantly altered the commercially pure titanium surface(P<0.01).

  • PDF

4-phenylbutyric Acid Regulates Collagen Synthesis and Secretion Induced by High Concentrations of Glucose in Human Gingival Fibroblasts

  • Lee, Geum-Hwa;Oh, Hyo-Won;Lim, Hyun-Dae;Lee, Wan;Chae, Han-Jung;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.345-351
    • /
    • 2011
  • High glucose leads to physio/pathological alterations in diabetes patients. We investigated collagen production in human gingival cells that were cultured in high concentrations of glucose. Collagen synthesis and secretion were increased when the cells were exposed to high concentrations of glucose. We examined endoplasmic reticulum (ER) stress response because glucose metabolism is related to ER functional status. An ER stress response including the expression of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), inositol requiring enzyme alpha (IRE-$1{\alpha}$) and phosphoreukaryotic initiation factor alpha (p-eIF-$2{\alpha}$) was activated in the presence of high glucose. Activating transcription factor 4 (ATF-4), a downstream protein of p-eIF-$2{\alpha}$ as well as a transcription factor for collagen, was also phosphorylated and translocalized into the nucleus. The chemical chaperone 4-PBA inhibited the ER stress response and ATF-4 phosphorylation as well as nuclear translocation. Our results suggest that high concentrations of glucose-induced collagen are linked to ER stress and the associated phosphorylation and nuclear translocation of ATF-4.

The Effect of decalcified Root Surface as PDGF Carrier (PDGF 함유매개체로서 탈회된 치근면의 효과)

  • Woo, Hyo-Sang;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.889-905
    • /
    • 1996
  • It is known that growth factors function as potent biologic mediators regulating numerous activities of wound healing via cell proliferation, migration and extracellular matrix formation and they also promote periodontal regeneration. But, method of growth factor application is controversial yet. So purpose of this study is to evaluate the effect of demineralized root surface as one of method of growth factor application. The ginigival fibroblasts were primary cultured and fifth or sixth subpassages were used in these experiments. In first experiment, root surface blocks demineralized with 100mg/ml tetracycline for 5 minutes and pH 1 citric acid for 3 minutes(experimental groups) and nonteminerilized root surface blocks (control groups) were placed in 100ng/ml PDGF-BB for 5 minutes. Then the cells were seeded on each root surface blocks and cultured for 6, 24, 48, 72 hours. In second experiment, root surface blocks deminerilized with tetracycline and citric acid and nondemineralized root surface blocks were placed in 200ng/ml PDGF-BB for 5 minutes and another non-demineralized root surfcae blocks were placed in DMEM without PDGF-BB. At 1, 2, 4, 6, 8 days, the cells were seeded in 24-well plate and using of each eluent, cultured for 72 hours. The results of the four determinants were presented as mean and S.D.. The results were as follows : The attachment and proliferation of human gingival fibroblast on root surface were more increased when PDGF-BB was applicated on root surfrace demineralized with tetracycline or citric acid than non-demineralized root surface. And, in comparision tetracycline with citric acid, there were more attachment and proliferation of human gingival fibroblast on root surface demineralized with tetracycline than citric acid, and proliferation of human gingival fibroblast on demineralized root surface was increased time dependently 1 day to 3 days. In second experiment using eluent, proliferation of human gingival fibroblast was more increased to 6 days when human gingival fibroblast was cultured in eluent that PDGF-BB was applicated on demineralized root surface than two control groups, and degree of proliferation was decreased time dependently 1 day to 6 days. Proliferation of human gingival fibroblast cultured in eluent without PDGF-BB was constant 1 day to 6 days. After 6 days, degree of proliferation of human gingival fibroblast was similar in four groups. This means that release duration of PDGF-BB from demineralized root surface is 6 days. And in comparision tetracycline with citric acid, there was more proliferation of human gingival fibroblast in tetracycline-treated group than citric acid. In conclusion, demineralized root surface as primary site for PDGF-BB application, especially demineralized with tetracycline has important roles in attachment and proliferation of human gingival fibroblast, and may be useful clinical applications in periodontal regenerative procedures.

  • PDF

Triclosan Inhibition of Prostaglandin $E_2$ Production in Human Gingival Fibroblast (치은 섬유모세포에서 Triclosan에 의한 Prostaglandin $E_2$ 합성 억제)

  • Park, Seong-Pyu;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.345-356
    • /
    • 2004
  • The triclosan was shown to have anti-microbial and anti-inflammatory effect with inhibition of inflammatory mediators such as prostaglandin $E_2(PGE_2)$. The purpose of this study was to elucidate whether and how $PGE_2$ could be inhibited by triclosan in human gingival fibroblast. Human gingival fibroblast-1 cells (ATCC CRL2014) were pre-treated for 1 hour with triclosan (0.001 ${\mu}/ml{\sim}10$ ${\mu}/ml$) and then stimulated with $TNF-{\alpha}$ (1.0 ng/ml). $PGE_2$ synthesis was evaluated by ELISA and gene expression of COX-1 and COX-2 was evaluated by RT-PCR after $TNF-{\alpha}$, triclosan, and NS-398 (COX-2 inhibitor, 5, ${\mu}M$) and/ or cycloheximide (protein synthesis inhibitor, 2 ${\mu}g/ml$). Triclosan was cytotoxic to human gingival fibroblasts in the concentration higher than 1.0 ${\mu}g/ml$ for longer than 24 hours in tissue culture. The $PGE_2$ synthesis was inhibited by triclosan in dose-dependent manner. Greater COX-2 mRNA suppression was observed with triclosan (0.1 ${\mu}g/ml$) than with $TNF-{\alpha}$ alone, without change in COX-1 gene expression. Inhibitory effects of triclosan on $PGE_2$ synthesis disappeared in presence of cycloheximide. This study suggests that triclosan inhibit prostaglandin $E_2$ at the level of COX-2 gene regulation and require de novo protein synthesis.