• Title/Summary/Keyword: human evolution

Search Result 392, Processing Time 0.028 seconds

The Limit of Gene-Culture Co-evolutionary Theory

  • Lee, Min-seop;Jang, Dayk
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.3
    • /
    • pp.173-191
    • /
    • 2017
  • The theories of cultural evolution hold subtly or clearly different stances about definition of culture, pattern of cultural evolution, biases that affect cultural evolution, and relationship between culture and organism. However, the cultural evolution theories have a common problem to solve: As the evolutionary theory of life tries to explain the early steps and the origin of life, the cultural evolution theories also must explain the early steps of the cultural evolution and the role of the human capability that makes cultural evolution possible. Therefore, explanations of the human's unique traits including the cultural ability are related to determine which one is the most plausible among many cultural evolution theories. Theories that tried to explain human uniqueness commonly depict the coevolution of gene (organism) and culture. We will explicitly call the niche construction theory and the dual inheritance theory the 'gene-culture co-evolutionary theory'. In these theories, the most important concept is the 'concept of positive feedback'. In this paper, we distinguish between core positive feedback and marginal positive feedback, according to whether the trait that the concept of positive feedback explains is the trait of human uniqueness. Both types of positive feedback effectively explain the generality of human uniqueness and the diversity of human traits driven by cultural groups. However, this positive feedback requires an end, in contrast to negative feedback which can be continued in order to maintain homeostasis. We argue that the co-evolutionary process in the gene-culture co-evolutionary theories include only the positive feedback, not covering the cultural evolution after the positive feedback. This thesis strives to define the coevolution concept more comprehensively by suggesting the potential relationships between gene and culture after the positive feedback.

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

The Future of Products (제품의 미래)

  • 이홍구
    • Archives of design research
    • /
    • v.16 no.3
    • /
    • pp.81-90
    • /
    • 2003
  • The purpose of the study is to propose a new way of classification for products and to forecast the future of products through the physical factor and the mental factor as human natures. For the purpose of the study, the research was carried out in three ways. Firstly, the study considered the evolutional process of products through human natures. At this stage, the study defined that the physical ability and the mental ability of human are the cores of the product's evolution. Secondly, for understanding human evolution, the study set up two types of future humans . Finally, the study classified products by the physical factor and the mental factor as human natures with the aspect of embryology. As the results, the study illustrated two different species of products and their futures.

  • PDF

Accelerated Evolution of the Regulatory Sequences of Brain Development in the Human Genome

  • Lee, Kang Seon;Bang, Hyoeun;Choi, Jung Kyoon;Kim, Kwoneel
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2020
  • Genetic modifications in noncoding regulatory regions are likely critical to human evolution. Human-accelerated noncoding elements are highly conserved noncoding regions among vertebrates but have large differences across humans, which implies human-specific regulatory potential. In this study, we found that human-accelerated noncoding elements were frequently coupled with DNase I hypersensitive sites (DHSs), together with monomethylated and trimethylated histone H3 lysine 4, which are active regulatory markers. This coupling was particularly pronounced in fetal brains relative to adult brains, non-brain fetal tissues, and embryonic stem cells. However, fetal brain DHSs were also specifically enriched in deeply conserved sequences, implying coexistence of universal maintenance and human-specific fitness in human brain development. We assessed whether this coexisting pattern was a general one by quantitatively measuring evolutionary rates of DHSs. As a result, fetal brain DHSs showed a mixed but distinct signature of regional conservation and outlier point acceleration as compared to other DHSs. This finding suggests that brain developmental sequences are selectively constrained in general, whereas specific nucleotides are under positive selection or constraint relaxation simultaneously. Hence, we hypothesize that human- or primate-specific changes to universally conserved regulatory codes of brain development may drive the accelerated, and most likely adaptive, evolution of the regulatory network of the human brain.

Evolutionary Developmental Perspectives on Child Development (아동발달에 대한 진화 발달적 관점)

  • Shin, HyeEun;Choi, Kyoung-Sook
    • Korean Journal of Child Studies
    • /
    • v.26 no.5
    • /
    • pp.185-204
    • /
    • 2005
  • This paper demonstrated how application of evolutionary knowledge to developmental perspectives enhances understanding of human ontogeny. Evolutionary Developmental Psychology (EDP) explains human behavior through evolutionary principles and focuses on ontogeny rather than phylogeny. In this paper, the authors review concepts of evolution, adaptations, and the processes of evolution from EDP perspectives. The definition and basic assumptions of EDP are introduced, followed by explanations of how evolution happens in ontogeny by looking at developmental systems approaches, concepts of ontogenetic and deferred adaptations, evolution of childhood, and brain plasticity. Possible pathways of evolution in ontogeny are also discussed. Finally, some research methodology for applying EDP to child development is suggested with specific hypotheses and studies.

  • PDF

Biological Network Evolution Hypothesis Applied to Protein Structural Interactome

  • Bolser, Dan M.;Park, Jong Hwa
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.7-19
    • /
    • 2003
  • The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.

Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome

  • Ahmed, Musaddeque;Liang, Ping
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.230-238
    • /
    • 2013
  • Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.

Game and evolution of human identity - focused on MMORPG (게임과 인간 정체성의 진화 - MMORPG를 중심으로)

  • Choi, Du-Yeol;Park, Jin-Wan
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.89-98
    • /
    • 2020
  • Computer simulations based on technical imagination break down invisible walls placed between the virtual and reality and causes users to face situations mixed with reality and the virtual. The development of technology embraces evolves human identity. This can serve as an opportunity that increases the value and utilization levels of games and this can be seen as an opportunity to discuss the evolution of games. In this study focused on MMORPG, discussions are made of the diverse values of online games along with the evolution of human identity that is achieved within them.

African great apes (chimpanzee and gorilla) : feature, phylogeny and evolution (아프리카 대형 유인원(침팬지, 고릴라) : 특징, 계통 및 진화)

  • 홍경원;김희수
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The chimpanzee and gorilla are classified into hominidae, catarrhini, primates. These species are originated from Africa, so called African great apes. Recently, primatologists have classified that there are 2 species 5 subspecies of the chimpanzee and gorilla, respectively. Since the human genome project has been finished, the chimpanzee genome project has been launched to understand human evolution and genetic diseases. The sequences of chimpanzee chromosome 22 homologous to human chromosome 21 were completed, and then the Y chromosome of chimpanzee is being analyzed. Comparative analysis of human, chimpanzee and gorilla could provide the key for understanding of various human diseases and human origin. By detecting human specific-functional genes or mobile genetic elements (HERV, LINE, SINE) through primate research, we could understand what is human being\ulcorner gradually, For these comparative researches, we summarized fundamental knowledge of the feature, phylogeny and evolution of African great apes including humans.

Development of an Effective Strategy to Teach Evolution

  • Ha, Min-Su;Cha, Hee-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.3
    • /
    • pp.440-454
    • /
    • 2011
  • This study proposes a new instructional strategy and corresponding materials designed from various alternative frameworks to help students understand evolution as a biologically acceptable theory. Biology teachers have normally taught the evolutionary mechanism by means of comparing Lamarckism with natural selection. In this study, a new instructional strategy in which the Lamarckian explanation is first excluded because Lamarckism is known to be subsumed in a learner's cognitive structure as a strong preconception of evolution is suggested for teaching evolution. After mutation theory is introduced, Darwinism including natural selection is explained separately during the next class hour. Corresponding instructional materials that aid student understanding of the evolutionary mechanism were developed using recently published articles on human genetic traits as scientific evolutionary evidence instead of the traditional evolutionary subject matter, giraffe neck. Evolutionary evidence from human genetic traits allows students to exclude anthropocentric thoughts effectively and raise concern for the phenomenon of evolution positively. The administered instructional strategy and materials in this research improved student conception, concern, and belief of evolution and it is believed that they helped students understand the evolutionary mechanism effectively.