• Title/Summary/Keyword: human embryonic stem cell research

Search Result 107, Processing Time 0.025 seconds

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.

Current Progress in Generation of Genetically Modified Mice (유전자 조작 마우스 개발의 최신 연구 동향)

  • Song, Ki-Duk;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.587-592
    • /
    • 2007
  • Manipulation of the mouse genome by activating or inactivating the gene has contributed to the understanding of the function of the gene in the subset of cells during embryonic development or postnatal period of life. Most of all, gene targeting, which largely depends on the availability of mouse embryonic stem (ES) cells, is the milestone of development of animal models for human disease. Recombinase-mediated genome modification (Cre-LoxP and Flp-Frt etc) and the ligand-dependent regulation system, more accurate and elaborate manipulation tools, have been successfully developed and applied to dissect the mechanisms governing complex biological processes and to understand the role of protein in temporal-and spatial aspects of development. As technologies concerning refined manipulation of mouse genome are developed, they are expected to open new opportunities to better understand the diverse in vivo functions of genes.

Isolation and Culture of Human Embryonic Stem-like Cells from Abnormal Blastocysts (비정상 포배기 배아에서 인간 배아줄기 유사 세포의 분리 및 배양에 관한 연구)

  • Lim, Chun-Kyu;Sung, Ji-Hye;Park, Jong-Hyuk;Kim, Sun-Jong;Yoon, Hyun-Soo;Koong, Mi-Kyoung;Jun, Jin-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.4
    • /
    • pp.293-298
    • /
    • 2003
  • 목 적: 인간의 배아줄기세포는 전분화능과 영속성을 가지고 있어 발생 및 분화에 관련된 기초 연구 뿐 만 아니라 재생의학, 약물검색 등에서도 매우 유용한 재료로 이용될 수 있다.본 연구에서는 유전체의 변형이 배아줄기세포주의 확립 효율에 미치는 영향을 살펴보고자 비정상적인 포배기 배아에서 내세포괴를 분리하여 배양하였다. 연구 방법: 인간의 체외수정 및 배아이식술에서 공여 받은1개 또는3개의 전핵이 관찰되는 비정상 수정란 (n=20)과 착상전 유전진단에서 이수성이 확인된 배아 (n=27)를 대상으로 하였다. 일반적인 immunosurgery 방법으로 영양배엽세포들을 제거하고 내세포괴를 분리한 후 PMEF 혹은 STO feeder 세포위에서 배양하였다. 배아줄기세포의 배양시스템을 검증하기 위해서 이미 확립된 Miz-hES1 cell line을 동시에 같은 조건 하에서 계대배양하였다. 결 과: 비정상 수정란에서 발생된 포배기 배아에서 분리한 1개의 내세포괴가 배아줄기세포와 유사한 colony를 형성하였으나, 계대배양에는 실패하였다. 이수성 배아에서 발생된 포배기 배아의 내세포괴 배양에서는 두개의 colony가 계대배양 중에 영양배엽세포의 형태로 분화되어 미분화 상태를 유지하지 못하였다. 동일한 시기와 조건 하에서 계대배양된 Miz-hES1 cell line이 미분화상태로 유지됨을 karyotyping (46, XY)과 immunophenotyping (positive in SSEA-3 and -4)으로 확인하였다. 결 론: 본 연구의 결과에서 비정상 수정란과 이수성 배아에서 발생된 포배기 배아에서 유래한 내세포괴는 배아줄기세포주 확립 및 미분화 상태 유지 능력이 매우 저조한 것으로 여겨진다. 따라서, 인간의 배아줄기세포주를 확립하는데 있어 배아의 정상여부가 중요한 요소로 작용할 것으로 생각된다.

Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline

  • Tahermansouri, Hasan;Mirosanloo, Atieh;Keshel, Saeed Heidari;Gardaneh, Mossa
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)-COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT-quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 µg/mL.

Bracken-fern Extracts Induce Cell Cycle Arrest and Apoptosis in Certain Cancer Cell Lines

  • Roudsari, Motahhareh Tourchi;Bahrami, Ahmad Reza;Dehghani, Hesam;Iranshahi, Mehrdad;Matin, Maryam Moghadam;Mahmoudi, Mahmud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6047-6053
    • /
    • 2012
  • Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations ($200{\mu}g/mL$) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and $30{\mu}g/mL$) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

Effects of Human Mesenchymal Stem Cell Transplantation Combined with Polymer on Functional Recovery Following Spinal Cord Hemisection in Rats

  • Choi, Ji Soo;Leem, Joong Woo;Lee, Kyung Hee;Kim, Sung-Soo;SuhKim, Haeyoung;Jung, Se Jung;Kim, Un Jeng;Lee, Bae Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • The spontaneous axon regeneration of damaged neurons is limited after spinal cord injury (SCI). Recently, mesenchymal stem cell (MSC) transplantation was proposed as a potential approach for enhancing nerve regeneration that avoids the ethical issues associated with embryonic stem cell transplantation. As SCI is a complex pathological entity, the treatment of SCI requires a multipronged approach. The purpose of the present study was to investigate the functional recovery and therapeutic potential of human MSCs (hMSCs) and polymer in a spinal cord hemisection injury model. Rats were subjected to hemisection injuries and then divided into three groups. Two groups of rats underwent partial thoracic hemisection injury followed by implantation of either polymer only or polymer with hMSCs. Another hemisection-only group was used as a control. Behavioral, electrophysiological and immunohistochemical studies were performed on all rats. The functional recovery was significantly improved in the polymer with hMSC-transplanted group as compared with control at five weeks after transplantation. The results of electrophysiologic study demonstrated that the latency of somatosensory-evoked potentials (SSEPs) in the polymer with hMSC-transplanted group was significantly shorter than in the hemisection-only control group. In the results of immunohistochemical study, ${\beta}$-gal-positive cells were observed in the injured and adjacent sites after hMSC transplantation. Surviving hMSCs differentiated into various cell types such as neurons, astrocytes and oligodendrocytes. These data suggest that hMSC transplantation with polymer may play an important role in functional recovery and axonal regeneration after SCI, and may be a potential therapeutic strategy for SCI.