• 제목/요약/키워드: human colorectal cell

검색결과 217건 처리시간 0.182초

천초근 에탄올 추출물의 항산화 효능 및 대장암 세포 억제 효과 (Anti-colorectal Cancer and Anti-oxidant Activities of Rubiae radix Ethanol Extract in vitro)

  • 노종현;심미옥;정호경;이무진;장지훈;정다은;성태경;안병관;조현우
    • 한국자원식물학회지
    • /
    • 제31권2호
    • /
    • pp.102-108
    • /
    • 2018
  • 본 연구는 꼭두서니의 뿌리인 천초근의 물 추출물과 에탄올 추출물을 이용하여 대장암 세포에 대한 암세포 성장 억제 및 사멸효과가 있는지 알아보고자 수행하였다. ERA(천초근 에탄올 추출물)은 폴리페놀($45.77{\pm}2.03mg/g$)과 플라보노이드($22.82{\pm}1.33mg/g$)를 함유하고 있었으며, $H_2O_2$에 의해 증가된 ROS(reactive oxygen species)를 억제하는 효과를 나타냈지만 WRA(천초근 물 추출물)은 효과가 없었다. 또한 ERA는 $500{\mu}g/m{\ell}$의 농도로 대장암 세포주(HCT-116)에 처리했을 때 세포사멸을 유도할 뿐만 아니라 caspase-3 단백질 활성화, DNA fragmentation 및 apoptotic cell death를 일으키는 것으로 확인되었다. 이는 ERA가 HCT-116 세포주에 대해 apoptosis(세포자멸사)를 통해 항암효과를 나타내는 것으로 생각되지만 다른 연구결과들과 비교하였을 때 농도 대비 효능이 미미하다. 따라서 천초근 에탄올 추출물에 대장암 세포의 성장을 억제하는 유효성분을 분석하여 그 효능을 탐색하는 추가실험이 필요할 것으로 생각된다.

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

독활 에탄올 추출물의 대장암 세포에서 Cyclin D1 단백질 분해 유도를 통한 세포 생육 억제활성 (Anti-proliferative Activity of Ethanol Extracts of Root of Aralia cordata var. continentalis through Proteasomal Degradation of Cyclin D1 in Human Colorectal Cancer Cells)

  • 박수빈;박광훈;송훈민;박지혜;신명수;손호준;엄유리;정진부
    • 한국약용작물학회지
    • /
    • 제25권5호
    • /
    • pp.328-334
    • /
    • 2017
  • Background: In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the root of Aralia cordata var. continentalis (Kitagawa) Y. C. Chu (RAc-E70) against human colorectal cancer cells. Methods and Results: RAc-E70 suppressed the proliferation of the human colorectal cancer cell lines, HCT116 and SW480. Although RAc-E70 reduction cyclin D1 expression at the protein and mRNA levels, RAc-E70-induced reduction in cyclin D1 protein level occurred more dramatically than that of cyclin D1 mRNA. The RAc-E70-induced downregulation of cyclin D1 expression was attenuated in the presence of MG132. Additionally, RAc-E70 reduced HA-cyclin D1 levels in HCT116 cells transfected with HA-tagged wild type-cyclin D1 expression vector. RAc-E70-mediated cyclin D1 degradation was blocked in the presence of LiCl, a $GSK3{\beta}$ inhibitorbut, but not PD98059, an ERK1/2 inhibitor and SB203580, a p38 inhibitor. Furthermore, RAc-E70 phosphorylated cyclin D1 at threonine-286 (T286), and LiCl-induced $GSK3{\beta}$ inhibition reduced the RAc-E70-mediated phosphorylation of cyclin D1 at T286. Conclusions: Our results suggested that RAc-E70 may downregulate cyclin D1 expression as a potential anti-cancer target through $GSK3{\beta}$-dependent cyclin D1 degradation. Based on these findings, RAc-E70 maybe a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.

Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells

  • Amiri, Ahmad;Namavari, Mehdi;Rashidi, Mojtaba;Fahmidehkar, Mohammad Ali;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.565-570
    • /
    • 2015
  • Breast and colorectal cancers rank high in Iran as causes of mortality. Most of the current treatments are expensive and non-specific. The potential anticancer properties of common home gecko, Cyrtopodion scabrum, were investigated in this study. The effects of C. scabrum extract on proliferation, viability and migration of the colorectal cancer (SW-742), breast cancer (MCF-7) and normal (MSC) cell lines were investigated using MTT and in vitro wound healing assay. $IC_{50}$ values calculated for the extract were $559{\pm}28.9{\mu}g/mL$ for MCF-7 and $339{\pm}11.3{\mu}g/mL$ for SW-742. No toxic effects on the normal control cells were observed. MCF-7 and SW-742 cell growth was inhibited by 32.6% and 62%, under optimum conditions, compared to the untreated control cells. The extract also decreased the motility and migration ability of both cancer cell lines, with no significant effects on the normal control cells. Data suggest C. scabrum extract as a useful natural resource for targeting cancer cells specifically.

Anti-proliferative Effect of a Novel Anti-oxidative Peptide in Hanwoo Beef on Human Colorectal Carcinoma Cells

  • Kim, Hye-Jin;Yang, Se-Ran;Jang, Aera
    • 한국축산식품학회지
    • /
    • 제38권6호
    • /
    • pp.1168-1178
    • /
    • 2018
  • The present study aimed to characterise anti-oxidant peptides from water-soluble protein extracts of Hanwoo beef and evaluate their anti-proliferative effect on human colorectal carcinoma cells (HCT116). Antioxidant peptides were purified from the low-molecular-weight fraction (<3 kDa) of Hanwoo beef extract. Antioxidant activity of peptide fractions was determined using the oxygen radical absorbance capacity (ORAC) assay. Purified peptide (P3) displayed higher ORAC activity than the low-molecular-weight fraction ($202.66{\mu}M\;TE/g$ vs $167.38{\mu}M\;TE/g$ of dry matter, respectively) (p<0.05). The peptide sequence of P3 was Cys-Cys-Cys-Cys-Ser-Val-Gln-Lys (888.30 Da). The novel peptide P3, at $250{\mu}g/mL$, also significantly inhibited HCT116 cell proliferation up to 25.24% through phosphorylation of ERK, JNK, and p38 kinase (p<0.05). Hence, antioxidant peptide P3 from Hanwoo beef extract can be used as an antioxidative and anticancer agent in the functional food industry.

복수암 생쥐와 인체 암세포에 대한 알로에의 항암 작용 (Anticancer Effects of Aloe on Sarcoma 180 in ICR Mouse and on Human Cancer Cell Lines)

  • 정혜윤;김재현;황세진;이동권
    • 약학회지
    • /
    • 제38권3호
    • /
    • pp.311-321
    • /
    • 1994
  • Anticancer effects of Aloe on sarcoma 180 in ICR mouse or human cancer cells were determined. Sarcoma 180 cells were inoculated subcutaneously into male ICR mouse to determine effect of Aloe on tumor gowth, or inoculated intraperitoneally into male ICR mouse to determine effect of Aloe on life span prolongation, followed by oral administration of Aloe vera(10 mg/kg/day, 50 mg/kg/day) or Aloe arborescens(10 mg/kg/day, 100 mg/kg/day) once a day for 14 days. The administration of Aloe vera or Aloe arborescens did not suppress tumor growh. However the life span of ICR mouse was prolonged to 19%(p<0.05), 22%(p<0.05) and 32%(p<0.05) by administration of Aloe vera 10 mg/kg/day, Aloe vera 50 mg/kg/day, and Aloe arborescens 100 mg/kg/day, respectively. To determine anticancer effect of Aloe in vitro, Aloe extract was added to the culture of human gastric cancer cells(SNU-1) and colorectal cancer cells(SNU-C2A), and concentration of Aloe to inhibit cancer cell growth was determined using MTT(3-[ 4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay. High $ID_{50}$ values of Aloe vera and Aloe arborescens against gastric cancer cell line(SNU-1) and colorectal cancer cell line(SNU-C2A) suggest that Aloe gel does not have anticancer effect on these specific human cancer cells although high concentration of Aloe inhibited growth of human cancer cells significantly.

  • PDF

Tanshinone II-A Inhibits Angiogenesis through Down Regulation of COX-2 in Human Colorectal Cancer

  • Zhou, Li-Hong;Hu, Qiang;Sui, Hua;Ci, Shu-Jun;Wang, Yan;Liu, Xuan;Liu, Ning-Ning;Yin, Pei-Hao;Qin, Jian-Min;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4453-4458
    • /
    • 2012
  • Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis. Our aim was to investigate the inhibitory effects of Tan II-A (Tanshinone II-A, Tan II-A) on tumor growth in mice, as well as alteration of expression of COX-2 and VEGF in CRC. We established the mice xenograft model of C26 CRC cell line, and injected 0.5, 1, 2mg/kg of Tan II-A and 1mg/kg of 5-FU in respectively in vivo. Then, we assayed tumor weight and volume, and evaluated microvascular density and expression of VEGF. COX-2 promoter and COX-2 plasmids were transfected into HCT-116 cells, followed by detection of COX-2 promoter activity by chemiluminescence, and detection of COX-2 mRNA expression by fluorescence quantitative PCR. Taken together, the results showed Tan II-A could inhibit tumor growth and suppress the VEGF level in vivo. HCT-116 cell experiments showed marked inhibitory effects of Tan II-A on COX-2 and VEGF in a dose-dependent manner. The results indicate that Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF.

Expression and in vitro function of anti-cancer mAbs in transgenic Arabidopsis thaliana

  • Song, Ilchan;Kang, Yang Joo;Kim, Dae Heon;Kim, Mi Kyung;Ko, Kisung
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.229-233
    • /
    • 2020
  • The anti-colorectal cancer monoclonal antibody CO17-1A (mAb CO), which recognizes the tumor-associated antigen EpCAM, was expressed in transgenic Arabidopsis plants. PCR and western blot analyses showed the insertion and expression of heavy chain (HC)/HC fused to the KDEL ER retention modif (HCK) and light chain (LC) of mAb CO and mAb CO with HCK (mAb COK) in Arabidopsis transformants. Both plant-derived mAbP CO and mAbP COK were purified from a biomass of approximately 1,000 seedlings grown in a greenhouse. In sandwich ELISA, both mAbP CO showed a slightly higher binding affinity for the target, EpCAM, compared to mAbM CO. In cell ELISA, both mAbsP COs showed binding affinity to the human colorectal cancer cell line SW480. Furthermore, mAbM CO, mAbP CO, and mAbP COK exhibited dose and timedependent regression effects on SW480 cells in vitro. In summation, both mAbP CO and mAbP COK, expressed in Arabidopsis, recognized the target antigen EpCAM and showed anti-proliferative activity against human colorectal cancer cells.

Epithelial-mesenchymal Transition and Its Role in the Pathogenesis of Colorectal Cancer

  • Zhu, Qing-Chao;Gao, Ren-Yuan;Wu, Wen;Qin, Huan-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2689-2698
    • /
    • 2013
  • Epithelial-to-mesenchymal transition (EMT) is a collection of events that allows the conversion of adherent epithelial cells, tightly bound to each other within an organized tissue, into independent fibroblastic cells possessing migratory properties and the ability to invade the extracellular matrix. EMT contributes to the complex architecture of the embryo by permitting the progression of embryogenesis from a simple single-cell layer epithelium to a complex three-dimensional organism composed of both epithelial and mesenchymal cells. However, in most tissues EMT is a developmentally restricted process and fully differentiated epithelia typically maintain their epithelial phenotype. Recently, elements of EMT, specially the loss of epithelial markers and the gain of mesenchymal markers, have been observed in pathological states, including epithelial cancers. Increasing evidence has confirmed its presence in human colon during colorectal carcinogenesis. In general, chronic inflammation is considered to be one of the causes of many human cancers including colorectal cancer(CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. A large body of evidence supports roles for the SMAD/STAT3 signaling pathway, the NF-kB pathway, the Ras-mitogenactivated protein kinase/Snail/Slug and microRNAs in the development of colorectal cancers via epithelial-tomesenchymal transition. Thus, EMT appears to be closely involved in the pathogenesis of colorectal cancer, and analysis refered to it can yield novel targets for therapy.