• 제목/요약/키워드: human breast cell lines

검색결과 226건 처리시간 0.024초

Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells

  • Ryu, Yeon-Sang;Shin, Sangyun;An, Hong-Gyu;Kwon, Tae-Uk;Baek, Hyoung-Seok;Kwon, Yeo-Jung;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.473-481
    • /
    • 2020
  • Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDA-MB-231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

목향(木香)으로부터 분리된 Sesquiterpene 화합물의 암세포 생육저해에 대한 활성 (Sesquiterpene Lactones from Saussurea lappa and Their Cell Proliferation Effects on Human Breast Cell Lines)

  • 박현선;최은정;이용수;김건희
    • 약학회지
    • /
    • 제51권2호
    • /
    • pp.145-149
    • /
    • 2007
  • Saussurea Radix, the dried roots of Saussurea lappa Clark (Compositae), has been used in oriental traditional medicine for aromatic stomachic. Present study was carried out for the anticancer effect of Saussurea Radix. Bioassay-directed fractionation of Saussurea Radix led to the isolation of two sesquiterpenes, dehydrocostuslactone (1) and costunolide (2). The structures of 1 and 2 were elucidated by spectral methods (MS, IR, $^1$H and $^{13}$C NMR). These compounds showed a potent cell proliferation activity against human breast cancer cell MCF-7 and MDA-MB-453.

Panduratin A Inhibits Cell Proliferation by Inducing G0/G1 Phase Cell Cycle Arrest and Induces Apoptosis in Breast Cancer Cells

  • Liu, Qiuming;Cao, Yali;Zhou, Ping;Gui, Shimin;Wu, Xiaobo;Xia, Yong;Tu, Jianhong
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.328-334
    • /
    • 2018
  • Because of the unsatisfactory treatment options for breast cancer (BC), there is a need to develop novel therapeutic approaches for this malignancy. One such strategy is chemotherapy using non-toxic dietary substances and botanical products. Studies have shown that Panduratin A (PA) possesses many health benefits, including anti-inflammatory, anti-bacterial, anti-oxidant and anticancer activities. In the present study, we provide evidence that PA treatment of MCF-7 BC cells resulted in a time- and dose-dependent inhibition of cell growth with an $IC_{50}$ of $15{\mu}M$ and no to little effect on normal human MCF-10A breast cells. To define the mechanism of these anti-proliferative effects of PA, we determined its effect critical molecular events known to regulate the cell cycle and apoptotic machinery. Immunofluorescence and flow cytometric analysis of Annexin V-FITC staining provided evidence for the induction of apoptosis. PA treatment of BC cells resulted in increased activity/expression of mitochondrial cytochrome C, caspases 7, 8 and 9 with a significant increase in the Bax:Bcl-2 ratio, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Furthermore, cell cycle analysis using flow cytometry showed that PA treatment of cells resulted in G0/G1 arrest in a dose-dependent manner. Immunoblot analysis data revealed that, in MCF-7 cell lines, PA treatment resulted in the dose-dependent (i) induction of $p21^{WAF1/Cip1}$ and p27Kip1, (ii) downregulation of Cyclin dependent kinase (CDK) 4 and (iii) decrease in cyclin D1. These findings suggest that PA may be an effective therapeutic agent against BC.

Apoptotic Effects of 6-Gingerol in Human Breast Cancer Cells

  • Kim, Hyun-Woo;Oh, Deuk-Hee;Koh, Jeong-Tae;Lim, Young-Chai
    • International Journal of Oral Biology
    • /
    • 제40권4호
    • /
    • pp.223-228
    • /
    • 2015
  • 6-Gingerol exerts anti-tumor effects in various cancer cell models. We evaluated the effect of 6-gingerol on the growth of MCF-7 breast cancer cells and MCF-10A breast epithelial cells to determine whether any growth-inhibitory effects found were attributable to apoptosis, and to elucidate the underlying mechanism of action. 6-Gingerol inhibited the viability of both cell lines in a dose- and time-dependent manner; however, the degree of inhibition was greater in MCF-7 than MCF-10A cells. By flow cytometry, induction of dose- and time-dependent apoptosis was found, and the magnitude of apoptosis was also markedly greater in MCF-7 than MCF-10A cells. Expression of caspase-3 and poly (ADP-ribose) polymerase (PARP) was observed in MCF-7 cells treated with 6-gingerol, and further cleavage of PARP occurred in these cells. We suggest that 6-gingerol induces apoptosis in human breast cancer cells mainly by promoting caspase-3 expression and subsequent degradation of PARP.

CHEMOPREVENTIVE EFFECT OF GINKGO BILOBA EXTRACT: ESTROGENIC AND ANTIESTROGENIC POTENTIALS IN HUMAN BREAST CANCER CELL LINES

  • Oh, Seung-Min;Chung, Kyu-Hyuck
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.162-162
    • /
    • 2001
  • Phytoestrogens produced naturally by either plants or their seeds are three main classes of phytoestrogens: isoflavone, lignan and coumestan. Phytoestrogens can have both agonist and antagonist action of estrogenic activity. It is believed that phytoestrogens with agonist and antagonist action of estrogenic activity may reduce the risk of breast cancer, in addition to may reduce the risk of osteoporesis by therapeutic agent of breast cancer.(omitted)

  • PDF

Cytotoxic Activity of Four Xanthones from Emericella variecolor, an Endophytic Fungus Isolated from Croton oblongifolius

  • Pornpakakul Surachai;Liangsakul Jatupol;Ngamrojanavanich Nattaya;Roengsumran Sophon;Sihanonth Prakitsin;Piapukiew Jittra;Sangvichien Ek;Puthong Songchan;Petsom Amorn
    • Archives of Pharmacal Research
    • /
    • 제29권2호
    • /
    • pp.140-144
    • /
    • 2006
  • Four xanthones were isolated from mycelia of Emericella variecolor, an endophytic fungus isolated from the leaves of Croton oblongifolius. Their structures were elucidated by spectroscopic analysis to be shamixanthone, 14-methoxytajixanthone-25-acetate, tajixanthone methanoate, and tajixanthone hydrate. All compounds were tested for cytotoxic activity against various human tumor cell lines including gastric carcinoma, colon carcinoma, breast carcinoma, human hepatocarcinoma, and lung carcinoma. The antitumor activities of these xanthones were compared with that of doxorubicin hydrochloride, a chemotherapeutic substance. All of them showed moderate activities and were selective against gastric carcinoma, colon carcinoma, and breast carcinoma. Only tajixanthone hydrate exhibited moderate activity against all cancer cell lines. Furthermore, under the test conditions it was found that 14-methoxytajixanthone-25-acetate and tajixanthone hydrate are almost as active as doxorubicin hydrochloride against gastric carcinoma (KATO3) and breast carcinoma (BT474).

에스트로겐 수용체를 통한 카드뮴 독성 및 항산화제에 의한 독성경감에 관한 연구 (Study on the Estrogen Receptor Mediated Toxicity of Cadmium and Protective Effects of Antioxidant)

  • 김태성;강태석;강호일;문현주;강일현;이영주;최은희;홍진태;한순영;홍진환
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권1호
    • /
    • pp.12-19
    • /
    • 2006
  • Cadmium, a human carcinogen, can induce toxicity in various cell lines and organs. Despite extensive research, the mechanisms of cadmium-induced cell toxicity and estrogenic potential in human are not clear. This study was performed to investigate cadmium-induced toxicity on human breast cancer cells: MCF-7 cells, an estrogen receptor (ER) positive breast cancer cells, and MDA-MB-231 cells, an ER negative breast cancer cells. MCF-7 cells was proved to be more sensitive than the other cell lines (IC50 = $50\;{\mu}M$ at MCF-7 cells and $120{\mu}M$ at MDA-MB-231). The expression of JNK and AP-1 transcription factors such as c-Jun and c-Fos dependent transcription were increased by cadmium treatment. Inhibition of ER activation by ER antagonist (tamoxifen or ICI 182,780) significantly recovered the viablity and inhibited apoptotic cell death. This suggested that cadmium-induced cell death in ER (+) cells was mediated by JNK/AP-1 pathway and this pathway was more stimulated by ER activated by cadmium. Co-treatment of antioxidants such as selenium (Se), butylated hydroxyanisole (BHA), glutathione (GSH), or N-acetyl-L-cysteine (NAC) recovered the cadmium-induced cell death in MCF-7 cells. Cadmium-induced lipid peroxidation was decreased by GSH, NAC, or BHA in MCF-7 cells. The expression of SOD protein was decreased by cadmium ($100{\mu}M$) but recovered by GSH, NAC, BHA, or Se. Our data showed that the cadmium-induced cell toxicity in human breast cancer cells could be protected by the antioxidants (Se, BHA, NAC, GSH, or NAC) and ER antagonist (tamoxifen or ICI 182,780). Therefore, toxicity of cadmium in breast cancer were mediated by oxidative stress and $ER{\alpha}$.

  • PDF

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells

  • Bae, Sung Hun;Park, Ju Ho;Choi, Hyeon Gyeom;Kim, Hyesook;Kim, So Hee
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.494-502
    • /
    • 2018
  • Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.