• Title/Summary/Keyword: human breast cell lines

Search Result 226, Processing Time 0.02 seconds

Cytotoxic and Apoptotic Effects of Soybean and Brown Rice Extracts on Hormone Dependent/lndependent Breast Cancer Cell Lines (대두와 현미 추출몰이 호르몬 의존형 및 비의큰형 유방암세포의 성장에 미치는 영향)

  • 성미경;박미영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.521-526
    • /
    • 2002
  • A number of experimental and epidemiological studies have implicated that antiestrogenic effects of estrogen-like compounds in legumes and plant seeds are responsible for lowering breast cancer risk in human. However, few studies have been conducted to illustrate the possible chemopreventive effects of Korean traditional food materials. This study was performed to determine the cytotoxic and apoptotic effects of yellow soybeans, black soybeans and brown rice extracts on hormone-dependent and hormone-independent human breast cancer cells. Methanol-or acetone-soluble fractions of soybeans or brown rice were incubated with hormone-dependent cells (MCF-7) or hormone-independent cells (MDA-MB-231). Cell cytotoxicity was measured by MTT assay at 24, 48 and 72 hrs of incubation. Apoptotic effects of these extracts toward breast cancer cells were also determined at 48 hrs of incubation by measuring DNA fragmentation. Results indicated that the acetone-soluble fraction of brown rice exerted strongest cytotoxic effect on MCF-7 ceIls, although other fractions also reduced the number of viable MCF-7 cells after 48 hrs of incubation. Both acetone and methanol soluble fractions of all samples exerted a significant cytotoxicity towards MDA-MB-231 cells after 24 hrs of incubation, and acetone and methanol soluble fractions of brown rice were especially effective in these cells. At 48 hrs of incubation, methanol fractions of all three samples induced apopotosis of MDA-MB-231 cells. These results indicate methaol or acetone soluble fractions of yellow soybeans, black soybeans and brown rice induce cytotoxicity in both hormone-dependent and hormone-independent breast cancer cells. Therefore, possible mechanisms of cell cytotoxicity do not necessarily include antiestrogenic effects of soybean or brown rice extract. A possible anticarcinogenic effect of brown rice methanol-soluble fraction may mediated through their apoptotic effect. Further studies are requried to elucidate responsible compounds and mechanisms involved in observed anticarcinogenesis.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

The Human PTK6 Interacts with a 23-kDa Tyrosine-Phosphorylated Protein and is localized in Cytoplasm in Breast Carcinoma T-47D Cells

  • Bae, Joon-Seol;Lee, Seung-Thek
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The human PTK6 (also known as Brk) polypeptide, which is deduced from its full-length cDNA, represents a non-receptor protein tyrosine kinase (PTK). It contains SH3, SH2, and tyrosine kinase catalytic domains that are closely related to Src family members. We generated an antihuman PTK6 antibody by immunizing rabbits with a PTK6-specific oligopeptide conjugated to BSA, which corresponds to 11 amino acid residues near the C-terminus. An immunoblot analysis with the antibody detected an expected 52-kDa band in various mammalian transformed cell lines. Immunoprecipitation and immunoblot analyses demonstrated that PTK6 is phosphorylated on the tyrosine residues) and interacts with approximately a 23-kDa tyrosine-phosphorylated polypeptide (most likely a substrate of PTK6) in breast carcinoma T-47D cells. An immunofluorescence analysis demonstrated that PTK6 is localized throughout the cytoplasm of T-47D cells. These results support a possible role for PTK6 in the intracellular signal transduction through tyrosine phosphorylation.

  • PDF

Antiestrogen Interaction with Estrogen Receptors and Additional Antiestrogen Binding sites in Human Breast Cancer MCF-7 Cells

  • Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.579-585
    • /
    • 1997
  • To gain further insight into the mechanism of action of antiestrogens, we examined the interaction of antiestrogen with the estrogen receptor system and with estrogen- noncompetable antiestrogen binding sites. In addition to binding directly to the estrogen receptor, antiestrogens can be found associated with binding sites that are distinct from the estrogen receptor. In contrast to the restriction of estrogen receptors to estrogen target cells, such as those of uterus and mammary glands, antiestrogen binding sites are present in equal amounts in estrogen receptor-positive and -negative human breast cancer cell lines, such as MCF-7, T47D, and MDA-MB-231 that differ markedly in their sensitivity to antiestrogens. In order to gain greater insight into the role of these antiestrogen binding sites in the action of antiestrogens, we have examined the biopotency of different antiestrogens for the antiestrogen binding sites and that is CI628 > tamoxifen > trans-hydroxy tamoxifen > CI628M > H1285 > LY117018. This order of affinities does not parallel the affinity of these compounds for the estrogen receptor nor the potency of these compounds as antiestrogens. Indeed, compounds with high affinity for the estrogen receptor and greatest antiestrogenic potency have low affinities for these antiestrogen binding sites. Antiestrogenic potency correlates best with estrogen receptor affinity and not with affinity for antiestrogen binding sites. In summary, our findings suggested that interaction with the estrogen receptor is most likely the mechanism through which antiestrogens evoke their growth inhibitory effects.

  • PDF

Correlation of Microvessel Density with Nuclear Pleomorphism, Mitotic Count and Vascular Invasion in Breast and Prostate Cancers at Preclinical and Clinical Levels

  • Muhammadnejad, Samad;Muhammadnejad, Ahad;Haddadi, Mahnaz;Oghabian, Mohammad-Ali;Mohagheghi, Mohammad-Ali;Tirgari, Farrokh;Sadeghi-Fazel, Fariba;Amanpour, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Background: Tumor angiogenesis correlates with recurrence and appears to be a prognostic factor for both breast and prostate cancers. In the present study, we aimed to investigate the correlation of microvessel density (MVD), a measure of angiogenesis, with nuclear pleomorphism, mitotic count, and vascular invasion in breast and prostate cancers at preclinical and clinical levels. Methods: Samples from xenograft tumors of luminal B breast cancer and prostate adenocarcinoma, established by BT-474 and PC-3 cell lines, respectively, and commensurate human paraffin-embedded blocks were obtained. To determine MVD, specimens were immunostained for CD-34. Nuclear pleomorphism, mitotic count, and vascular invasion were determined using hematoxylin and eosin (H&E)-stained slides. Results: MVD showed significant correlations with nuclear pleomorphism (r=0.68, P=0.03) and vascular invasion (r=0.77, P=0.009) in breast cancer. In prostate cancer, MVD was significantly correlated with nuclear pleomorphism (r=0.75, P=0.013) and mitotic count (r=0.75, P=0.012). In the breast cancer xenograft model, a significant correlation was observed between MVD and vascular invasion (r=0.87, P=0.011). In the prostate cancer xenograft model, MVD was significantly correlated with all three parameters (nuclear pleomorphism, r=0.95, P=0.001; mitotic count, r=0.91, P=0.001; and vascular invasion, r=0.79, P=0.017; respectively). Conclusions: Our results demonstrate that MVD is correlated with nuclear pleomorphism, mitotic count, and vascular invasion at both preclinical and clinical levels. This study therefore supports the predictive value of MVD in breast and prostate cancers.

Asiatic Acid Promotes p21WAF1/CIP1 Protein Stability through Attenuation of NDR1/2 Dependent Phosphorylation of p21WAF1/CIP1 in HepG2 Human Hepatoma Cells

  • Chen, Jin-Yuan;Xu, Qing-Wen;Xu, Hong;Huang, Zong-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.963-967
    • /
    • 2014
  • Previous studies have suggested anti-tumor effects of asiatic acid in some human cancer cell lines. This agent is reported to increase the levels of $p21^{WAF1/CIP1}$ in human breast cancer cell lines. However, the molecular mechanisms have not been established. Here we report that asiatic acid up-regulates $p21^{WAF1/CIP1}$ protein expression but not the level of $p21^{WAF1/CIP1}$ mRNA in HepG2 human hepatoma cells. Furthermore, we found that the asiatic acid induced increase of $p21^{WAF1/CIP1}$ protein was associated with decreased phosphorylation (ser-146) of $p21^{WAF1/CIP1}$. Knockdown of NDR1/2 kinase, which directly phosphorylates $p21^{WAF1/CIP1}$ protein at ser-146 and enhances its proteasomal degradation, increased the levels of $p21^{WAF1/CIP1}$ protein and eliminated the regulation of $p21^{WAF1/CIP1}$ stability by asiatic acid. At the same time, the expression of NDR1/2 kinase decreased during treatment with asiatic acid in HepG2 cells. Moreover, asiatic acid inhibited the proliferation of HepG2 cells, this being attenuated by knockdown of $p21^{WAF1/CIP1}$. In conclusion, we propose that asiatic acid inhibits the expression NDR1/2 kinase and promotes the stability of $p21^{WAF1/CIP1}$ protein through attenuating NDR1/2 dependent phosphorylation of $p21^{WAF1/CIP1}$ in HepG2 cells.

Cytotoxic Effect of the Pine needle extracts (솔잎 추출물의 in vitro계 암세포 성장억제효과)

  • Kim, Eun-Jeong;Jung, Sung-Won;Choi, Keun-Pyo;Ham, Seung-Shi;Gang, Ha-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.213-217
    • /
    • 1998
  • This study was performed to observe cytotoxic effect of the pine needle extracts against cancer cell lines including human gastric carcinoma (KATOIII), human lung carcinoma (A549), human hepatocellular carcinoma (Hep3B) and human breast adenocarcinoma (MCF-7) using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and SRB (sulforhodamine B) method. The extracts were prepared by step-wise fractionation of ethanol extract of pine needles using diethylether, chloroform, ethylacetate, butanol and water. The growth of the cancer cells in medium containing pine needle extracts were significantly inhibited degree in proportion to the increase of the extract concentration. A significant shrinkage of Hep3B cells was observed when the cells were exposed into 0.5, 1 mg/mL of pinus rigida extract.

  • PDF

Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline

  • Tahermansouri, Hasan;Mirosanloo, Atieh;Keshel, Saeed Heidari;Gardaneh, Mossa
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • The attachment of 2-aminobenzamide to carboxylated multi-wall carbon nanotubes (MWCNTs)-COOH was achieved through the formation of amide bonds. Then, the functionalized MWCNTs, MWCNT-amide, were treated by phosphoryl chloride to produce MWCNT-quin. The products were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, derivative thermogravimetric, steady-state fluorescence spectroscopy, and solubility testing. MWCNT-quin showed photo-electronic properties, which is due to the attachment of the 4-hydroxyquinazoline groups to them as proved by steady-state fluorescence spectroscopy. This suggests intramolecular interactions between the tubes and the attached 4-hydroxyquinazoline. The toxicity of the samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines, and the viable cell numbers were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) after the cells were cultured for 24 h. Cellular investigations showed that the modified MWCNTs, particularly MWCNT-quin, have considerably significant toxic impact on SKBR3 as compared to HEK293 at the concentration of 5 µg/mL.

Design, Synthesis and In Vitro Cytotoxic Activity Evaluation of New Mannich Bases

  • Bui, Trung Hieu;Le, Thi Thuy;Vu, Thu Thuy;Hoang, Xuan Tien;Luu, Van Chinh;Vu, Dinh Hoang;Tran, Khac Vu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1586-1592
    • /
    • 2012
  • A series of Novel Mannich bases has been synthesized and evaluated $in$ $vitro$ cytotoxic activity against the human hepatocellular carcinoma (HepG2), human lung carcinoma (SK-LU-1), and human breast cancer (MCF-7). Compound $\mathbf{9f}$ was found to be most potent against three cell lines with $IC_{50}$ values of 1.57, 1.16 and 1.21 ${\mu}g$/mL, respectively. In addition, compounds $\mathbf{9g}$, $\mathbf{10f}$ exhibited very significant activity against MCF-7 cell line with $IC_{50}$ values of 2.0 ${\mu}g$/mL.

Cytotoxic and Anti-oxidant Constituents from the Aerial Parts of Aruncus dioicus var. kamtschaticus

  • Zhao, Bing Tian;Jeong, Su Yang;Vu, Viet Dung;Min, Byung Sun;Kim, Young Ho;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 2013
  • Ten compounds (1 - 10), palmitic acid (1), 10-nonacosanol (2), pentacosan-1-ol (3), phytol (4), ${\beta}$-sitosterol (5), ${\beta}$-sitosterol-3-O-${\beta}$-D-glucopyranoside (6), 2,4-dihydroxycinnamic acid (7), hyperoside (8), uridine (9) and adenosine (10), were isolated from the n-hexane and EtOAc-soluble fractions of the aerial parts of A. dioicus var. kamtschaticus (Rosaceae). The structures of these compounds were elucidated on the basis of spectroscopic evidence. All compounds (1 - 10) were isolated for the first time from this plant. Cytotoxicity of 1 - 10 against Jurkat T (T-lymphocytic leukemia cells), HeLa (Human cervical epitheloid carcinoma cells), MCF-7 (Human breast cancer cells), and HL-60 (Human promyelocytic leukemia cells) cell lines was measured. Compound 6 showed good cytotoxicity against HL-60 cell line with $IC_{50}$ value of 8.13 ${\mu}g/mL$. In addition, compounds 7 and 8 exhibited antioxidant activity with $IC_{50}$ values of 16.30 and 12.42 ${\mu}g/mL$, respectively.