• 제목/요약/키워드: human breast cancer cell

검색결과 610건 처리시간 0.024초

Induction of Cell Death by Bifidobacterium infantis DS1685 in Colorectal and Breast Cancers via SMAD4/TGF-Beta Activation

  • In Hwan Tae;Jinkwon Lee;Yunsang Kang;Jeong Min Lee;Kunhyang Park;Haneol Yang;Hee-Won Kim;Jeong Heon Ko;Doo-Sang Park;Dae-Soo Kim;Mi-Young Son;Hyun-Soo Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1698-1704
    • /
    • 2024
  • Therapeutic advancements in treatments for cancer, a leading cause of mortality worldwide, have lagged behind the increasing incidence of this disease. There is a growing interest in multifaceted approaches for cancer treatment, such as chemotherapy, targeted therapy, and immunotherapy, but due to their low efficacy and severe side effects, there is a need for the development of new cancer therapies. Recently, the human microbiome, which is comprised of various microorganisms, has emerged as an important research field due to its potential impact on cancer treatment. Among these microorganisms, Bifidobacterium infantis has been shown to significantly improve the efficacy of various anticancer drugs. However, research on the role of B. infantis in cancer treatment remains insufficient. Thus, in this study, we explored the anticancer effect of treatment with B. infantis DS1685 supernatant (BI sup) in colorectal and breast cancer cell lines. Treatment with BI sup induced SMAD4 expression to suppress cell growth in colon and breast cancer cells. Furthermore, a decrease in tumor cohesion was observed through the disruption of the regulation of EMT-related genes by BI sup in 3D spheroid models. Based on these findings, we anticipate that BI sup could play an adjunctive role in cancer therapy, and future cotreatment of BI sup with various anticancer drugs may lead to synergistic effects in cancer treatment.

Analysis of opposing histone modifications H3K4me3 and H3K27me3 reveals candidate diagnostic biomarkers for TNBC and gene set prediction combination

  • Park, Hyoung-Min;Kim, HuiSu;Lee, Kang-Hoon;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.266-271
    • /
    • 2020
  • Breast cancer encompasses a major portion of human cancers and must be carefully monitored for appropriate diagnoses and treatments. Among the many types of breast cancers, triple negative breast cancer (TNBC) has the worst prognosis and the least cases reported. To gain a better understanding and a more decisive precursor for TNBC, two major histone modifications, an activating modification H3K4me3 and a repressive modification H3K27me3, were analyzed using data from normal breast cell lines against TNBC cell lines. The combination of these two histone markers on the gene promoter regions showed a great correlation with gene expression. A list of signature genes was defined as active (highly enriched H3K4me3), including NOVA1, NAT8L, and MMP16, and repressive genes (highly enriched H3K27me3), IRX2 and ADRB2, according to the distribution of these histone modifications on the promoter regions. To further enhance the investigation, potential candidates were also compared with other types of breast cancer to identify signs specific to TNBC. RNA-seq data was implemented to confirm and verify gene regulation governed by the histone modifications. Combinations of the biomarkers based on H3K4me3 and H3K27me3 showed the diagnostic value AUC 93.28% with P-value of 1.16e-226. The results of this study suggest that histone modification analysis of opposing histone modifications may be valuable toward developing biomarkers and targets for TNBC.

더위지기 추출물의 항돌연변이원성 및 세포독성효과 (Antimutagenicity and Cytotoxicity of Artemisia iwayomogi Kitamura Extracts)

  • 함승시;정차권;이재훈;최근표;정성원;김은정
    • 한국식품영양과학회지
    • /
    • 제27권1호
    • /
    • pp.157-162
    • /
    • 1998
  • The antimutagenic activity of three kinds of extract such as fresh juice, ethanol extract and water extract of Artemisia iwayomogi against 3 - amino - 1, 4 - dimethyl - 5H - pyrido [4,3-b] indol (Trp-P-1) and N - methyl - N' - nitro - N -nitrosoguanidine(MNNG) was demonstrated with the Salmonella typhimurium assay. The number of revertants per plate decreased significantly when these extracts(0.5ug/plate) added to the assay system system using S. typhimurium TA 100. These extracts also showed prominant cytotoxic activity against four different kinds of human cancer cell as human lung cancer cell (A549), breast cancer cell(MCF7), fibrosacoma cell(HT1080) and gastric cancer cell(KATOIII), respectively.

  • PDF

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

Effects of $\alpha$-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells

  • Na, Mi-Hee;Seo, Eun-Young;Kim, Woo-Kyoung
    • Nutrition Research and Practice
    • /
    • 제3권4호
    • /
    • pp.265-271
    • /
    • 2009
  • The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. $\alpha$-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 ${\mu}mol/L$) of $\alpha$-lipoic acid. The results revealed that $\alpha$-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, $ErbB_2$ and $ErbB_3$ protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to $\alpha$-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with $\alpha$-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with $\alpha$-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with $\alpha$-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with $\alpha$-lipoic acid (P < 0.05). In conclusion, we demonstrated that $\alpha$-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.

Differentially Expressed Proteins in ER+ MCF7 and ER- MDA-MB-231 Human Breast Cancer Cells by RhoGDI-α Silencing and Overexpression

  • Hooshmand, Somayeh;Ghaderi, Abbas;Yusoff, Khatijah;Thilakavathy, Karuppiah;Rosli, Rozita;Mojtahedi, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3311-3317
    • /
    • 2014
  • Background: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDI${\alpha}$) activity on migration and invasion of estrogen receptor positive ($ER^+$) and negative ($ER^-$) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDI${\alpha}$ and other proteins interacting directly or indirectly with RhoGDI${\alpha}$ in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. Materials and Methods: $ER^+$ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDI${\alpha}$ using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDI${\alpha}$. Results: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDI${\alpha}$ in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDI${\alpha}$ in MCF7, while only one protein was identified in the upregulation of RhoGDI${\alpha}$ in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-${\alpha}$ activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Conclusions: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDI${\alpha}$ with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

Phorbol Ester TPA Modulates Chemoresistance in the Drug Sensitive Breast Cancer Cell Line MCF-7 by Inducing Expression of Drug Efflux Transporter ABCG2

  • Kalalinia, Fatemeh;Elahian, Fatemeh;Hassani, Mitra;Kasaeeian, Jamal;Behravan, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2979-2984
    • /
    • 2012
  • Recent studies have indicated a link between levels of cyclooxygenase-2 (COX-2) and development of the multidrug resistance (MDR) phenotype. The ATP-binding cassette sub-family G member 2 (ABCG2) is a major MDR-related transporter protein that is frequently overexpressed in cancer patients. In this study, we aimed to evaluate any positive correlation between COX-2 and ABCG2 gene expression using the COX-2 inducer 12-O-tetradecanoylphorbol-13-acetate (TPA) in human breast cancer cell lines. ABCG2 mRNA and protein expression was studied using real-time RT-PCR and flow cytometry, respectively. A significant increase of COX-2 mRNA expression (up to 11-fold by 4 h) was induced by TPA in MDA-MB-231 cells, this induction effect being lower in MCF-7 cells. TPA caused a considerable increase up to 9-fold in ABCG2 mRNA expression in parental MCF-7 cells, while it caused a small enhancement in ABCG2 expression up to 67 % by 4 h followed by a time-dependent decrease in ABCG2 mRNA expression in MDA-MB-231 cells. TPA treatment resulted in a slight increase of ABCG2 protein expression in MCF-7 cells, while a time-dependent decrease in ABCG2 protein expression was occurred in MDA-MB-231 cells. In conclusion, based on the observed effects of TPA in MDA-Mb-231 cells, it is proposed that TPA up-regulates ABCG2 expression in the drug sensitive MCF-7 breast cancer cell line through COX-2 unrelated pathways.

Treatment of Human Thyroid Carcinoma Cells with the G47delta Oncolytic Herpes Simplex Virus

  • Wang, Jia-Ni;Xu, Li-Hua;Zeng, Wei-Gen;Hu, Pan;Rabkin, Samuel D.;Liu, Ren-Rin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.1241-1245
    • /
    • 2015
  • Background: Thyroid carcinoma is the most common malignancy of the endocrine organs. Although the majority of thyroid cancer patients experience positive outcomes, anaplastic thyroid carcinoma is considered one of the most aggressive malignancies. Current therapeutic regimens do not confer a significant survival benefit, and new therapies are urgently needed. Oncolytic herpes simplex virus (oHSV) may represent a promising therapy for cancer. In the present study, we investigated the therapeutic effects of a third-generation HSV vector, $G47{\Delta}$, on various human thyroid carcinoma cell lines in vitro. Two subcutaneous (s.c.) models of anaplastic thyroid carcinoma were also established to evaluate the in vivo anti-tumor efficacy of $G47{\Delta}$. Materials and Methods: The human thyroid carcinoma cell line ARO, FRO, WRO, and KAT-5, were infected with $G47{\Delta}$ at different multiplicities of infection (MOIs) in vitro. The survival rates of infected cells were calculated each day. Two s.c. tumor models were established using ARO and FRO cells in Balb/c nude mice, which were intratumorally (i.t.) treated with either $G47{\Delta}$ or mock. Tumor volumes and mouse survival times were documented. Results: $G47{\Delta}$ was highly cytotoxic to different types of thyroid carcinomas. For ARO, FRO, and KAT-5, greater than 30% and 80% of cells were killed at MOI=0.01 and MOI=0.1, respectively on day 5. WRO cells displayed modest sensitivity to $G47{\Delta}$, with only 21% and 38% of cells killed. In the s.c. tumor model, both of the anaplastic thyroid carcinoma cell lines (ARO and FRO) were highly sensitive to $G47{\Delta}$; $G47{\Delta}$ significantly inhibited tumor growth and prolonged the survival of mice bearing s.c. ARO and FRO tumors. Conclusions: The oHSV $G47{\Delta}$ can effectively kill different types of human thyroid carcinomas in vitro. $G47{\Delta}$ significantly inhibited growth of anaplastic thyroid carcinoma in vivo and prolonged animal survival. Therefore, $G47{\Delta}$ may hold great promise for thyroid cancer patients.

Correlation of Microvessel Density with Nuclear Pleomorphism, Mitotic Count and Vascular Invasion in Breast and Prostate Cancers at Preclinical and Clinical Levels

  • Muhammadnejad, Samad;Muhammadnejad, Ahad;Haddadi, Mahnaz;Oghabian, Mohammad-Ali;Mohagheghi, Mohammad-Ali;Tirgari, Farrokh;Sadeghi-Fazel, Fariba;Amanpour, Saeid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.63-68
    • /
    • 2013
  • Background: Tumor angiogenesis correlates with recurrence and appears to be a prognostic factor for both breast and prostate cancers. In the present study, we aimed to investigate the correlation of microvessel density (MVD), a measure of angiogenesis, with nuclear pleomorphism, mitotic count, and vascular invasion in breast and prostate cancers at preclinical and clinical levels. Methods: Samples from xenograft tumors of luminal B breast cancer and prostate adenocarcinoma, established by BT-474 and PC-3 cell lines, respectively, and commensurate human paraffin-embedded blocks were obtained. To determine MVD, specimens were immunostained for CD-34. Nuclear pleomorphism, mitotic count, and vascular invasion were determined using hematoxylin and eosin (H&E)-stained slides. Results: MVD showed significant correlations with nuclear pleomorphism (r=0.68, P=0.03) and vascular invasion (r=0.77, P=0.009) in breast cancer. In prostate cancer, MVD was significantly correlated with nuclear pleomorphism (r=0.75, P=0.013) and mitotic count (r=0.75, P=0.012). In the breast cancer xenograft model, a significant correlation was observed between MVD and vascular invasion (r=0.87, P=0.011). In the prostate cancer xenograft model, MVD was significantly correlated with all three parameters (nuclear pleomorphism, r=0.95, P=0.001; mitotic count, r=0.91, P=0.001; and vascular invasion, r=0.79, P=0.017; respectively). Conclusions: Our results demonstrate that MVD is correlated with nuclear pleomorphism, mitotic count, and vascular invasion at both preclinical and clinical levels. This study therefore supports the predictive value of MVD in breast and prostate cancers.

6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone Induces Caspase-8- and -9-mediated Apoptosis in Human Cancer Cells

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Ristee, Chantrarat;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2637-2641
    • /
    • 2013
  • 6,8-Dihydroxy-7-methoxy-1-methyl-azafluorenone (DMMA), a purified compound from Polyalthia cerasoides roots, is cytotoxic to various cancer cell lines. The aims of this study were to demonstrate the type of cancer cell death and the mechanism(s) involved. DMMA inhibited cell growth and induced apoptotic death in human leukemic cells (HL-60, U937, MOLT-4), human breast cancer MDA-MB231 cells and human hepatocellular carcinoma HepG2 cells in a dose dependent manner, with $IC_{50}$ values ranging between 20-55 ${\mu}M$. DMMA also decreased cell viability of human peripheral blood mononuclear cells. The morphology of cancer cells induced by the compound after staining with propidium iodide and examined under a fluorescence microscope was condensed nuclei and apoptotic bodies. Mitochondrial transmembrane potential (MTP) was decreased after 24h exposure in all five types of cancer cells. DMMA-induced caspase-3, -8, and -9 activity was strongly induced in human leukemic HL-60 and MOLT-4 cells, while in U937-, MDA-MB231- and HepG2-treated cells there was partial induction of caspase. In conclusion, DMMA-induced activation of caspase-8 and -9 resulted in execution of apoptotic cell death in human leukemic HL-60 and MOLT-4 cell lines via extrinsic and intrinsic pathways.