• Title/Summary/Keyword: human bone marrow stromal cells

Search Result 32, Processing Time 0.017 seconds

Enhanced biological effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant, on HL60 cells

  • Chung, Hee-Kyoung;Kim, Sung-Woo;Byun, Sung-June;Ko, Eun-Mi;Chung, Hak-Jae;Woo, Jae-Seok;Yoo, Jae-Gyu;Lee, Hwi-Cheul;Yang, Byoung-Chul;Kwon, Moo-Sik;Park, Soo-Bong;Park, Jin-Ki;Kim, Kyung-Woon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.686-691
    • /
    • 2011
  • Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.

Fabrication of 3D PCL/PLGA/TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment (다축 적층 시스템과 실험 계획법을 이용한 3차원 PCL/PLGA/ICP 바이오 인 공지지체 제작)

  • Kim, Jong-Young;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Shin-Yoon;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-154
    • /
    • 2009
  • In recent tissue engineering field, it is being reported that the fabrication of 3D scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various solid free-form fabrication technologies are being applied. The solid free-form fabrication technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer manner. In this research, we developed a multi-head deposition system (MHDS) and used design of experiment (DOE) to fabricate 3D scaffold having an optimized internal/external shape, Through the organization of experimental approach using DOE, the fabrication process of scaffold, which is composed of blended poly-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and tricalcium phosphate (TCP), is established to get uniform line width, line height and porosity efficiently Moreover, the feasibility of application to the tissue engineering of MHDS is demonstrated by human bone marrow stromal cells (hBMSCs) proliferation test.