• 제목/요약/키워드: human activity recognition system

검색결과 83건 처리시간 0.034초

CW 레이다 기반 사람 행동 인식 시스템 설계 및 구현 (Design and Implementation of CW Radar-based Human Activity Recognition System)

  • 남정희;강채영;국정연;정윤호
    • 한국항행학회논문지
    • /
    • 제25권5호
    • /
    • pp.426-432
    • /
    • 2021
  • CW (continuous wave) 도플러 레이다는 카메라와 달리 사생활 침해 문제를 해결할 수 있고, 비접촉 방식으로 신호를 얻을 수 있다는 장점이 있다. 따라서, 본 논문에서는 CW 도플러 레이다를 이용한 사람 행동 인식 시스템을 제안하고, 가속을 위한 하드웨어 설계 및 구현 결과를 제시한다. CW 도플러 레이다는 사람의 연속된 동작에 대한 신호를 측정한다. 이에, 동작 분류를 위한 단일 스펙트로그램을 얻기 위해 운동 동작의 횟수를 세는 기법을 제안하였다. 또한, 연산의 복잡도와 메모리 사용량을 최소화하기 위해 동작 분류에 BNN (binarized neural network)을 사용하였고, 검증 결과 94%의 정확도를 보임을 확인하였다. BNN의 복잡한 연산을 가속하기 위해 FPGA를 이용하여 BNN 가속기가 설계 및 구현되었다. 제안된 사람 행동 인식 시스템은 logic 7,673개, register 12,105개, combinational ALUT (adaptive look up table) 10,211개, block memory 18.7 Kb를 사용하여 구현되었으며, 성능 평가 결과 소프트웨어 구현 대비 연산 속도가 99.97% 향상되었다.

uPetCare : 웹2.0을 이용한 유비쿼터스 펫 케어 시스템 (uPetCare : Ubiquitous Pet-Care System using Web2.0)

  • 박준성;이귀로;조진성
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권4호
    • /
    • pp.260-264
    • /
    • 2009
  • 센서네트워크 시스템을 응용한 u-Healthcare 시스템 기술에 대한 많은 연구가 진행되고 있다. 이를 사람이 아닌 동물에 적용시켜 애완동물의 상태를 웹을 통하여 관리할 수 있는 uPetCare(Ubiquitous Pet-Care System)을 설계 및 구현하였다. uPetCare System의 주된 기능으로는 1) 센서를 통한 데이터의 수집, 2) 멀티-홉 통신 3) 싱크 노드에서의 데이터 압축(compression) 및 정리(aggregation), 4) 웹 서버에서의 데이터 저장, 5) AJAX 기술을 통한 실시간 정보 확인 6) 상황 인지 시스템을 통한 펫 관리 시스템을 포함한다.

제한된 라벨 데이터 상에서 다중-태스크 반 지도학습을 사용한 동작 인지 모델의 성능 향상 (Improving Human Activity Recognition Model with Limited Labeled Data using Multitask Semi-Supervised Learning)

  • ;;이석룡
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.137-147
    • /
    • 2018
  • 기계 학습을 통한 인간 동작 인지 (human activity recognition) 시스템에서 중요한 요소는 충분한 양의 라벨 데이터 (labeled data)를 확보하는 것이다. 그러나 라벨 데이터를 확보하는 일은 많은 비용과 시간을 필요로 한다. 매우 적은 수의 라벨 데이터를 가지고 있는 새로운 환경 (타겟 도메인)에서 동작 인지 시스템을 구축하는 경우, 기존의 환경 (소스 도메인)의 데이터나 이 환경에서 학습된 분류기(classifier)를 사용하는 것은 도메인이 서로 다르기 때문에 바람직하지 않다. 기존의 기계 학습 방법들이 이러한 문제를 해결할 수 없으므로 전이 학습 (transfer learning) 방법이 제시되었으며, 이 방법에서는 소스 도메인에서 확보한 지식을 활용하여 타겟 도메인에서의 분류기 성능을 높이도록 하고 있다. 본 논문에서는 다중 태스크 신경망 (multitask neural network)을 사용하여 매우 제한된 수의 데이터만으로 정확도가 높은 동작 인지 분류기를 생성하는 전이 학습방법을 제안한다. 이 방법에서는 소스 및 타겟 도메인 분류기의 손실 함수 최소화가 별개의 태스크로 간주된다. 즉, 하나의 신경망을 사용하여 두 태스크의 손실 함수를 동시에 최소화하는 방식으로 지식 전이(knowledge transfer)가 일어나게 된다. 또한, 제안한 방법에서는 모델 학습을 위하여 비지도 방식(unsupervised manner)으로 라벨이 부여되지 않은 데이터를 활용한다. 실험 결과, 제안한 방법은 기존의 방법에 비하여 일관적으로 우수한 성능을 보여주고 있다.

유전자 재조합 Human galectin-3의 발현과 성상 (Expression and characterization of the recombinant human galectin-3)

  • 김병규;우희종
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.547-554
    • /
    • 1997
  • Galectin-3 is known as an animal ${\beta}$-galactoside-binding lectin charicterized with S-type carbohydrate recognition domain. It plays a role in growth, adherence and movement of cells. It is, also, related to the cell transformation and metastasis of tumor cells. In this study, we have expressed and purified recombinant human galectin-3 (rHgalectin-3) using E coli system and asialofetuin affinity chromatography for the future development of monoclonal antibody to Hgalectin-3, which is suggested as the tumor marker for the gastric and thyroid gland cancers. Expressed protein was confirmed as the Hgalectin-3 by immunoblot with cross-reactive murine monoclonal antibody. Lectin activity and specificity of purified protein were, also, confirmed by the competitive inhibition with galectin-3 specific carbohydrate, lactose. Like physiological galectin-3, lectin activity of the molecule was not changed in nonreduced condition. Dimer formation, furthermore, was observed at high concentration of the protein even in the reduced condition, which is well known in physiological galectin-3. These results showed purified rHgalectin-3 has the same activity and molecular nature compared to the physiological galectin-3.

  • PDF

자폐 범주성 장애 아동의 눈맞춤과 얼굴표정읽기 기능향상을 위한 행동 중재용 로봇시스템 (A Robotic System with Behavioral Intervention facilitating Eye Contact and Facial Emotion Recognition of Children with Autism Spectrum Disorders)

  • 윤상석;김혁수;최종석;박성기
    • 로봇학회논문지
    • /
    • 제10권2호
    • /
    • pp.61-69
    • /
    • 2015
  • In this paper, we propose and examine the feasibility of the robot-assisted behavioral intervention system so as to strengthen positive response of the children with autism spectrum disorder (ASD) for learning social skills. Based on well-known behavioral treatment protocols, the robot offers therapeutic training elements of eye contact and emotion reading respectively in child-robot interaction, and it subsequently accomplishes pre-allocated meaningful acts by estimating the level of children's reactivity from reliable recognition modules, as a coping strategy. Furthermore, for the purpose of labor saving and attracting children's interest, we implemented the robotic stimulation configuration with semi-autonomous actions capable of inducing intimacy and tension to children in instructional trials. From these configurations, by evaluating the ability of recognizing human activity as well as by showing improved reactivity for social training, we verified that the proposed system has some positive effects on social development, targeted for preschoolers who have a high functioning level.

가속도센서를 이용한 상황인식 시스템 (Ambulatory System for Context Awareness Using a Accelerometer Sensor)

  • 진계환;이상복;최훈;서재원;배현덕;이태수
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.287-295
    • /
    • 2005
  • 본 논문에서는 유비쿼터스 컴퓨팅 기술의 여러 응용 서비스에서 가장 핵심적인 요소 기술 중의 하나인 사용자의 상황인식시스템에 대하여 기술한다. 제안하는 시스템은 실험 대상자의 우측 상완에 착용하는 $SenseWear(R)PRO_2R$ Armband (BodyMedia사)에 내장된 2차원 가속도센서를 이용하여, 센서에서 출력되는 가속도 변화량의 절대치의 평균치인 MAD(mean of absolute difference)를 계산하여 활동량을 정량화 하였으며, PC 기반의 눕기, 앉기, 걷기, 뛰기 4단계 동작의 인체동작상태 구분과 한정된 응급상활을 인지하는 퍼지추론 시스템으로 구현하였다. 본 시스템으로 측정한 수직방향의 MAD는 눕기, 앉기, 걷기, 뛰기에서 각각 0.204 g/s, 0.373 g/s, 2.808 g/s, 16.243 g/s이었다. 이들을 이용하여 분석한 인체동작 인식률은 눕기, 앉기, 걷기 뛰기에 대하여 각각 96.7 %, 93.0 %, 95.2 %, 98.4 %로 나타났으며, 제한된 상황에서의 응급상황인식률은 100 %이었다.

  • PDF

Roles of Transcription Factor Binding Sites in the D-raf Promoter Region

  • Kwon, Eun-Jeong;Kim, Hyeong-In;Kim, In-Ju
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.117-122
    • /
    • 1998
  • D-raf, a Drosophila homolog of the human c-raf-1, is known as a signal transducer in cell proliferation and differentiation. A previous study found that the D-raf gene expression is regulated by the DNA replication-related element (DRE)/DRE-binding factor (DREF) system. In this study, we found the sequences homologous to transcription factor C/EBP, MyoD, STAT and Myc recognition sites in the D-raf promoter. We have generated various base substitutional mutations in these recognition sites and subsequently examined their effects on D-raf promoter activity through transient CAT assays in Kc cells with reporter plasmids p5'-878DrafCAT carrying the mutations in these binding sites. Through gel mobility shift assay using nuclear extracts of Kc cells, we detected factors binding to these recognition sites. Our results show that transcription factor C/EBP, STAT and Myc binding sites in D-raf promoter region play a positive role in transcriptional regulation of the D-raf gene and the Myo D binding site plays a negative role.

  • PDF

시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식 (Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models)

  • 김혜숙;김인철
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.927-934
    • /
    • 2014
  • 본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.

스마트폰에서 센서 융합과 커널 판별 분석을 이용한 인간 활동 인식 (Human Activity Recognition Using Sensor Fusion and Kernel Discriminant Analysis on Smartphones)

  • 조정길
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.9-17
    • /
    • 2020
  • 스마트폰을 이용한 인간 활동 인식은 컴퓨터 지능 분야에서 뜨거운 연구 주제이다. 스마트폰에는 다양한 센서가 장착되어 있다. 이러한 센서의 데이터를 융합하면 응용프로그램에서 많은 활동을 인식할 수 있다. 그러나 이러한 장치는 활용 가능한 센서 수가 제한되기 때문에 리소스가 적으며, 최적의 성능과 효율적인 특징 추출을 달성하기 위해서는 특징 선택 및 분류 방법이 필요하다. 이 논문에서는 이러한 요구사항에 따라 스마트폰-기반 HAR 체계를 제안한다. 이 논문에서 제안된 방법은 가속도 센서, 자이로 센서, 기압 센서에서 시간-도메인 특징을 추출하며, 커널 판별 분석(KDA)과 SVM을 적용하여 높은 정확도로 활동을 인식한다. 이 방법은 각 활동에 대해 각 센서에서 가장 관련성이 높은 특징을 선택한다. 우리의 비교 결과는 제안된 시스템이 이전의 스마트폰-기반 HAR 시스템보다 성능이 우수함을 보여준다.

해양사고 절감을 위한 웨어러블 센서 기반 항해사 상황인지 인식 기법 개발 (Development of an Algorithm for Wearable sensor-based Situation Awareness Recognition System for Mariners)

  • 황태웅;윤익현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.395-397
    • /
    • 2019
  • 조선기술과 항해장비 기술이 발전하고 있지만 여전히 해양사고는 80%이상이 인적과실에서 비롯되고 있다. 인적과실을 저감시켜 해양사고를 절감시키려는 노력은 항해사를 대상으로 면담이나 설문을 시행하는 등 정성적인 연구방식에 많이 의존하고 있어서 객관적인 인적과실의 실체를 규명하는데 제한이 있다. 본 연구에서는 이 같은 단점을 극복하기 위하여 항해사의 항해 업무 수행을 방해하지 않으며 공간적 제한을 극복할 수 있도록 웨어러블 센서를 활용하여 항해사의 동작을 실측하고 상황인지 여부가 항해 수행 동작에 어떤 영향을 미치는지 구분하고자 한다. Full mission ship handling simulator를 활용하여 항해사가 특정한 시나리오를 수행하는 중에 위험성을 가진 장애물을 발견하기 전과 후의 어떤 행동패턴 변화를 보이는지 측정하였다. 구분된 항해 동작 패턴은 항해 위험 상황에서 적절한 조치를 취하고 있는지 여부를 객관적으로 구분하여 인적과실을 절감하는데 활용될 것으로 기대된다.

  • PDF