• Title/Summary/Keyword: hull-kernel closure

Search Result 1, Processing Time 0.015 seconds

THE COMPOSITION SERIES OF IDEALS OF THE PARTIAL-ISOMETRIC CROSSED PRODUCT BY SEMIGROUP OF ENDOMORPHISMS

  • ADJI, SRIWULAN;ZAHMATKESH, SAEID
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.869-889
    • /
    • 2015
  • Let ${\Gamma}^+$ be the positive cone in a totally ordered abelian group ${\Gamma}$, and ${\alpha}$ an action of ${\Gamma}^+$ by extendible endomorphisms of a $C^*$-algebra A. Suppose I is an extendible ${\alpha}$-invariant ideal of A. We prove that the partial-isometric crossed product $\mathcal{I}:=I{\times}^{piso}_{\alpha}{\Gamma}^+$ embeds naturally as an ideal of $A{\times}^{piso}_{\alpha}{\Gamma}^+$, such that the quotient is the partial-isometric crossed product of the quotient algebra. We claim that this ideal $\mathcal{I}$ together with the kernel of a natural homomorphism $\phi:A{\times}^{piso}_{\alpha}{\Gamma}^+{\rightarrow}A{\times}^{iso}_{\alpha}{\Gamma}^+$ gives a composition series of ideals of $A{\times}^{piso}_{\alpha}{\Gamma}^+$ studied by Lindiarni and Raeburn.