• Title/Summary/Keyword: hull cavitation

Search Result 56, Processing Time 0.02 seconds

Parametric study of propeller boss cap fins for container ships

  • Lim, Sang-Seop;Kim, Tae-Won;Lee, Dong-Myung;Kang, Chung-Gil;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.187-205
    • /
    • 2014
  • The global price of oil, which is both finite and limited in quantity, has been rising steadily because of the increasing requirements for energy in both developing and developed countries. Furthermore, regulations have been strengthened across all industries to address global warming. Many studies of hull resistance, propulsion and operation of ships have been performed to reduce fuel consumption and emissions. This study examined the design parameters of the propeller boss cap fin (PBCF) and hub cap for 6,000TEU container ships to improve the propulsion efficiency. The design parameters of PBCF have been selected based on the geometrical shape. Computational fluid dynamics (CFD) analysis with a propeller open water (POW) test was performed to check the validity of CFD analysis. The design of experiment (DOE) case was selected as a full factorial design, and the experiment was analyzed by POW and CFD analysis. Analysis of variance (ANOVA) was performed to determine the correlation among design parameters. Four design alternatives of PBCF were selected from the DOE. The shape of a propeller hub cap was selected as a divergent shape, and the divergent angle was determined by the DOE. Four design alternatives of PBCF were attached to the divergent hub cap, and the POW was estimated by CFD. As a result, the divergent hub cap with PBCF has a negative effect on the POW, which is induced by an increase in torque coefficient. A POW test and cavitation test were performed with a divergent hub cap with PBCF to verify the CFD result. The POW test result showed that the open water efficiency was increased approximately 2% with a divergent hub cap compared to a normal cap. The POW test result was similar to the CFD result, and the divergent hub cap with the PBCF models showed lower open water efficiency. This was attributed to an increase in the torque coefficient just like the CFD results. A cavitation test was performed using the 2 models selected. The test result showed that the hub vortex is increased downstream of the propeller.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller (선박 프로펠러 표면의 생물부착물이 프로펠러 유체역학적 성능에 미치는 영향에 관한 연구)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Goo, Bonguk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The effect of propeller surface roughness condition on ship performance is very significant even the influence of fouling on propeller performance is not well established compared to biofouling on the hull surface. In present study, predictions of open water efficiency of propeller are made for three different fouling conditions, and its application is given for the 7m full-scale propeller of a medium-size tanker in open water condition. The numerical predictions of propeller efficiency loss due to fouling are based on the results from laboratory-scale drag measurements and boundary layer similarity law analysis presented in Schultz (2007) together with an in-house unsteady lifting surface code which is an appropriate tool to predict the effect of propeller surface roughness on propeller performance. The results of this study indicate that the subject propeller with the small calcareous fouling ($k_s=0.001$) can lead to as high as 15 % loss at the propeller operating condition (J=0.5) and the loss of propeller efficiency due to fouling should be evaluated while the ship is operating.

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications - (저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.10-15
    • /
    • 1997
  • The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.

  • PDF

Development of a Preswirl Stator Propulsion System for a 300K VLCC (30만톤 초대형 유조선을 위한 전류고정날개 추진 시스템 개발)

  • Jin-Tae Lee;Moon-Chan Kim;Suak-Ho Van;Ki-Sup Kim;Ho-Chung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • Procedures for the development of a preswirl stator-propulsion system for a VLCC 300K are described in this paper. The preswirl stator-propulsion system is one of the compound propulsor systems, which is used for the purpose of recovering propeller slipstream rotational energy by locating a stator in front of the propeller. The preswirl stator-propulsion system can be considered as a most reliable energy saving device because of its simple mechanism. Five stators are designed for the existing hull form and propeller, and their effects are verified by model tests. Open-water test result of the preswirl stator-propulsion system at the cavitation tunnel show $4{\sim}6%$ increase of open-water efficiency compared to that of a propeller without stators. Maximum 6.5% decrease of delivered power at the design speed(15.5knots) is expected with the designed stator based on the analysis results of resistance and self-propulsion test at the towing tank.

  • PDF

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.