• 제목/요약/키워드: hull/mooring/riser coupled dynamic analysis

검색결과 6건 처리시간 0.017초

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

Dynamic Analysis of Multiple-Body Floating Platforms Coupled with Mooring Lines and Risers

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.11-26
    • /
    • 2005
  • In this study, the program to investigate the multiple body interaction effects between a floating platform and a shuttle tanker considering the coupled effect of hull (FPSO) with mooring lines and risers was developed. The coupled analysis program, which is called WINPOST-MULT using the hydrodynamic analysis results by WAMIT, was made. For the verification of WINPOST-MULT by means of numerical experiments, two multiple-body models of an FPSO-FPSO and an FPSO-shuttle tanker system are adopted. With the FPSO-FPSO model and a two-mass-spring system to idealize two identical bodies for the 100-year storm wave condition in GOM, the numerical simulations were performed to investigate the interaction effects between two identical bodies. For the more reality, the coupled analysis for the FPSO-shuttle tanker model in the tandem arrangement was carried out in the consideration of the environmental condition of the West Africa Sea as a rather mild condition. Through the case studies with interaction effect and without interaction effect by the iteration method and the combined method, it is verified that the program is a very useful tool for the analysis of the interaction problem of multiple-body system and the coupled problem of the hull/mooring/riser.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

Effects of geometric shape of LWSCR (lazy-wave steel catenary riser) on its global performance and structural behavior

  • Kim, Seungjun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.247-279
    • /
    • 2018
  • This study aims to investigate the behavioral characteristics of the LWSCR (lazy-wave steel catenary riser) for a turret-moored FPSO (Floating Production Storage Offloading) by using fully-coupled hull-mooring-riser dynamic simulation program in time domain. In particular, the effects of initial geometric profile on the global performance and structural behavior are investigated in depth to have an insight for optimal design. In this regard, a systematic parametric study with varying the initial curvature of sag and arch bend and initial position of touch down point (TDP) is conducted for 100-yr wind-wave-current (WWC) hurricane condition. The FPSO motions, riser dynamics, constituent structural stress results, accumulated fatigue damage of the LWSCR are presented and analyzed to draw a general trend of the relationship between the LWSCR geometric parameters and the resulting dynamic/structural performance. According to this study, the initial curvature of the sag and arch bend plays an important role in absorbing transferred platform motions, while the position of TDP mainly affects the change of static-stress level.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • 제11권4호
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

Numerical simulation of dynamic Interactions of an arctic spar with drifting level ice

  • Jang, H.K.;Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.345-362
    • /
    • 2016
  • This study aims to develop the numerical method to estimate level ice impact load and investigate the dynamic interaction between an arctic Spar with sloped surface and drifting level ice. When the level ice approaches the downward sloped structure, the interaction can be decomposed into three sequential phases: the breaking phase, when ice contacts the structure and is bent by bending moment; the rotating phase, when the broken ice is submerged and rotated underneath the structure; and the sliding phase, when the submerged broken ice becomes parallel to the sloping surface causing buoyancy-induced fictional forces. In each phase, the analytical formulas are constructed to account for the relevant physics and the results are compared to other existing methods or standards. The time-dependent ice load is coupled with hull-riser-mooring coupled dynamic analysis program. Then, the fully coupled program is applied to a moored arctic Spar with sloped surface with drifting level ice. The occurrence of dynamic resonance between ice load and spar motion causing large mooring tension is demonstrated.