• Title/Summary/Keyword: hub genes

Search Result 41, Processing Time 0.022 seconds

Pathogenesis and prognosis of primary oral squamous cell carcinoma based on microRNAs target genes: a systems biology approach

  • Taherkhani, Amir;Dehto, Shahab Shahmoradi;Jamshidi, Shokoofeh;Shojaei, Setareh
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.27.1-27.13
    • /
    • 2022
  • Oral squamous cell carcinoma (OSCC) is the most prevalent head and neck malignancy, with frequent cervical lymph-node metastasis, leading to a poor prognosis in OSCC patients. The present study aimed to identify potential markers, including microRNAs (miRNAs) and genes, significantly involved in the etiology of early-stage OSCC. Additionally, the main OSCC's dysregulated Gene Ontology annotations and significant signaling pathways were identified. The dataset GSE45238 underwent multivariate statistical analysis in order to distinguish primary OSCC tissues from healthy oral epithelium. Differentially expressed miRNAs (DEMs) with the criteria of p-value < 0.001 and |Log2 fold change| > 1.585 were identified in the two groups, and subsequently, validated targets of DEMs were identified. A protein interaction map was constructed, hub genes were identified, significant modules within the network were illustrated, and significant pathways and biological processes associated with the clusters were demonstrated. Using the GEPI2 database, the hub genes' predictive function was assessed. Compared to the healthy controls, main OSCC had a total of 23 DEMs. In patients with head and neck squamous cell carcinoma (HNSCC), upregulation of CALM1, CYCS, THBS1, MYC, GATA6, and SPRED3 was strongly associated with a poor prognosis. In HNSCC patients, overexpression of PIK3R3, GIGYF1, and BCL2L11 was substantially correlated with a good prognosis. Besides, "proteoglycans in cancer" was the most significant pathway enriched in the primary OSCC. The present study results revealed more possible mechanisms mediating primary OSCC and may be useful in the prognosis of the patients with early-stage OSCC.

Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation

  • Wang, Jiena;Zhu, Weiwei;Tu, Junxue;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1262-1274
    • /
    • 2022
  • Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation

  • Chen, Lei;Fang, Bo;Qiao, Liman;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.718-729
    • /
    • 2022
  • Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy with poor prognosis. Here, due to the necessity for exploring potential therapies against ESCC, we obtained the gene expression data on ESCC from the TCGA and GEO databases. Venn diagram analysis was applied to identify common targets. The protein-protein interaction network was constructed by Cytoscape software, and the hub targets were extracted from the network via cytoHubba. The potential hub nodes as drug targets were found by pharmacophore-based virtual screening and molecular modeling, and the antitumor activity was evaluated through in vitro studies. A total of 364 differentially expressed genes (DEGs) in ESCC were identified. Pathway enrichment analyses suggested that most DEGs were mainly involved in the cell cycle. Three hub targets were retrieved, including CENPF, CCNA2 (cyclin A), and CCNB1 (cyclin B1), which were highly expressed in esophageal cancer and associated with prognosis. Moreover, amentoflavone, a promising drug candidate found by pharmacophore-based virtual screening, showed antiproliferative and proapoptotic effects and induced G1 in esophageal squamous carcinoma cells. Taken together, our findings suggested that amentoflavone could be a potential cell cycle inhibitor targeting cyclin B1, and is therefore expected to serve as a great therapeutic agent for treating esophageal squamous cell carcinoma.

Bioinformatics Analysis Reveals Significant Genes and Pathways to Targetfor Oral Squamous Cell Carcinoma

  • Jiang, Qian;Yu, You-Cheng;Ding, Xiao-Jun;Luo, Yin;Ruan, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2273-2278
    • /
    • 2014
  • Purpose: The purpose of our study was to explore the molecular mechanisms in the process of oral squamous cells carcinoma (OSCC) development. Method: We downloaded the affymetrix microarray data GSE31853 and identified differentially expressed genes (DEGs) between OSCC and normal tissues. Then Gene Ontology (GO) and Protein-Protein interaction (PPI) networks analysis was conducted to investigate the DEGs at the function level. Results: A total 372 DEGs with logFCI >1 and P value < 0.05 were obtained, including NNMT, BAX, MMP9 and VEGF. The enriched GO terms mainly were associated with the nucleoplasm, response to DNA damage stimuli and DNA repair. PPI network analysis indicated that GMNN and TSPO were significant hub proteins and steroid biosynthesis and synthesis and degradation of ketone bodies were significantly dysregulated pathways. Conclusion: It is concluded that the genes and pathways identified in our work may play critical roles in OSCC development. Our data provides a comprehensive perspective to understand mechanisms underlying OSCC and the significant genes (proteins) and pathways may be targets for therapy in the future.

Identification of potential candidate genes for lip and oral cavity cancer using network analysis

  • Mathavan, Sarmilah;Kue, Chin Siang;Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.4.1-4.9
    • /
    • 2021
  • Lip and oral cavity cancer, which can occur in any part of the mouth, is the 11th most common type of cancer worldwide. The major obstacles to patients' survival are the poor prognosis, lack of specific biomarkers, and expensive therapeutic alternatives. This study aimed to identify the main genes and pathways associated with lip and oral cavity carcinoma using network analysis and to analyze its molecular mechanism and prognostic significance further. In this study, 472 genes causing lip and oral cavity carcinoma were retrieved from the DisGeNET database. A protein-protein interaction network was developed for network analysis using the STRING database. VEGFA, IL6, MAPK3, INS, TNF, MAPK8, MMP9, CXCL8, EGF, and PTGS2 were recognized as network hub genes using the maximum clique centrality algorithm available in cytoHubba, and nine potential drug candidates (ranibizumab, siltuximab, sulindac, pomalidomide, dexrazoxane, endostatin, pamidronic acid, cetuximab, and apricoxib) for lip and oral cavity cancer were identified from the DGIdb database. Gene enrichment analysis was also performed to identify the gene ontology categorization of cellular components, biological processes, molecular functions, and biological pathways. The genes identified in this study could furnish a new understanding of the underlying molecular mechanisms of carcinogenesis and provide more reliable biomarkers for early diagnosis, prognostication, and treatment of lip and oral cavity cancer.

Analysis of Molecular Pathways in Pancreatic Ductal Adenocarcinomas with a Bioinformatics Approach

  • Wang, Yan;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2561-2567
    • /
    • 2015
  • Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Pathway and Network Analysis in Glioma with the Partial Least Squares Method

  • Gu, Wen-Tao;Gu, Shi-Xin;Shou, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3145-3149
    • /
    • 2014
  • Gene expression profiling facilitates the understanding of biological characteristics of gliomas. Previous studies mainly used regression/variance analysis without considering various background biological and environmental factors. The aim of this study was to investigate gene expression differences between grade III and IV gliomas through partial least squares (PLS) based analysis. The expression data set was from the Gene Expression Omnibus database. PLS based analysis was performed with the R statistical software. A total of 1,378 differentially expressed genes were identified. Survival analysis identified four pathways, including Prion diseases, colorectal cancer, CAMs, and PI3K-Akt signaling, which may be related with the prognosis of the patients. Network analysis identified two hub genes, ELAVL1 and FN1, which have been reported to be related with glioma previously. Our results provide new understanding of glioma pathogenesis and prognosis with the hope to offer theoretical support for future therapeutic studies.

Hybrid Fungal Genome Annotation Pipeline Combining ab initio, Evidence-, and Homology-based gene model evaluation

  • Min, Byoungnam;Choi, In-Geol
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.22-22
    • /
    • 2018
  • Fungal genome sequencing and assembly have been trivial in these days. Genome analysis relies on high quality of gene prediction and annotation. Automatic fungal genome annotation pipeline is essential for handling genomic sequence data accumulated exponentially. However, building an automatic annotation procedure for fungal genomes is not an easy task. FunGAP (Fungal Genome Annotation Pipeline) is developed for precise and accurate prediction of gene models from any fungal genome assembly. To make high-quality gene models, this pipeline employs multiple gene prediction programs encompassing ab initio, evidence-, and homology-based evaluation. FunGAP aims to evaluate all predicted genes by filtering gene models. To make a successful filtering guide for removal of false-positive genes, we used a scoring function that seeks for a consensus by estimating each gene model based on homology to the known proteins or domains. FunGAP is freely available for non-commercial users at the GitHub site (https://github.com/CompSynBioLab-KoreaUniv/FunGAP).

  • PDF