• 제목/요약/키워드: hrp2+ gene

검색결과 22건 처리시간 0.045초

Purification and Characterization of Hrp1, a Homolog of Mouse CHD1 from the Fission Yeast Schizosaccharomyces pombe

  • Yong Hwan Jin;Eung Jae Yoo;Yeun Kyu Jang;Seung Hae Kim;Chee-Gun Lee;Rho Hyun Seong;Seung Hwan Hong;Sang Dai Park
    • Animal cells and systems
    • /
    • 제2권4호
    • /
    • pp.539-543
    • /
    • 1998
  • Hrp1, of Schizosaccharomyces pombe, is a new member of the SW12/SNF2 protein family that contains a chromodomain and a DNA binding domain as well as ATPase/7 helicase domains. This configuration suggests that Hrp1 could be a homolog of mouse CHD1, which is thought to function in altering the chromatin structure to facilitate gene expression. To understand the enzymatic nature of Hrp1 we purified the 6-Histidine-tagged Hrp1 protein (6$\times$His-Hrp1) to homogeneity from a S. pombe Hrp1-overexpressing strain and hen examined its biochemical properties. We demonstrate that the purified 6$\times$His-Hrp1 protein exhibited a DNA-binding activity with a moderate preference to the (A+T)-rich tract in double-stranded NA via a minor groove interaction. However, we failed to detect any intrinsic DNA helicase activity from the purified Hrp1 like other SW12/SNF2 proteins. These observations suggest that the DNA binding activities of Hrp1 may be involved in the remodeling of the chromatin structure with DNA-dependent ATPase. We propose that Hrp1 may function in heterochromatins as other proteins with a chromo- or ATPase/helicase domain and play an important role in the determination of chromatin architecture.

  • PDF

Inhibitory Activity of Sedum middendorffianum-Derived 4-Hydroxybenzoic Acid and Vanillic Acid on the Type III Secretion System of Pseudomonas syringae pv. tomato DC3000

  • Kang, Ji Eun;Jeon, Byeong Jun;Park, Min Young;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.608-617
    • /
    • 2020
  • The type III secretion system (T3SS) is a key virulence determinant in the infection process of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Pathogen constructs a type III apparatus to translocate effector proteins into host cells, which have various roles in pathogenesis. 4-Hydroxybenozic acid and vanillic acid were identified from root extract of Sedum middendorffianum to have inhibitory effect on promoter activity of hrpA gene encoding the structural protein of the T3SS apparatus. The phenolic acids at 2.5 mM significantly suppressed the expression of hopP1, hrpA, and hrpL in the hrp/hrc gene cluster without growth retardation of Pst DC3000. Auto-agglutination of Pst DC3000 cells, which is induced by T3SS, was impaired by the treatment of 4-hydroxybenzoic acid and vanillic acid. Additionally, 2.5 mM of each two phenolic acids attenuated disease symptoms including chlorosis surrounding bacterial specks on tomato leaves. Our results suggest that 4-hydroxybenzoic acid and vanillic acid are potential anti-virulence agents suppressing T3SS of Pst DC3000 for the control of bacterial diseases.

Identification of hrcC, hrpF, and maA Genes of Xanthomonas campestris pv. glycines 8ra: Roles in Pathogenicity and Inducing Hypersensitive Response on Nonhost Plants

  • Park, Byoung-Keun;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.21-27
    • /
    • 1999
  • Nonpathogenic mutants of Xanthomonas campestris pv. glycines were generated with Omegon-Kim to isolate genes essential for pathogenicity and inducing hypersensitive response (HR). Three nonpathogenic multants and two mutants showing slow symptom development were isolated among 1,000 colonies tested. From two nonpathogenic mutants, 8-13 and 26-13, genes homologous to hrcC and hrpF of X. campestris pv. vesicatoria were identified. The nonpathogenic mutant 8-13 had a mutation in a gene homologous to hrpF of X. campestris pv. vesicatoria and failed to cause HR on pepper plants but still induced HR on tomato leaves. The nonpathogenic mutant 26-13 had an insertional mutation in a gene homologous to hrcC of X. campestris pv. vesicatoria and lost the ability to induce HR on pepper leaves but still caused HR on tomato plants. Unlike other phytopathogenic bacteria, the parent strain and these two mutants of X. campestris pv. glycines did not cause HR on tobacco plants. a cosmid clone, pBL1, that complemented the phenotypes of 8-13 was isolated. From the analysis of restriction enzyme mapping and deletion analyses of pBL1, a 9.0-kb Eco RI fragment restored the phenotypes of 8-13. pBL1 failed to complement the phenotypes of 26-13, indicating that the hrcC gene resides outside of the insert DNA of pBL1. One nonpathogenic mutant, 13-33, had a mutation in a gene homologous to a miaA gene encoding tRNA delta (2)-isopentenylpyrophosphate transferase of Escherichia coli. This indicated that tRNA modifications in X. campestris pv. glycines may be required for expression of genes necessary for pathogenicity. The mutant 13-33 multiplied as well as the parent strain did in the culture medium and in planta, indicating that loss of pathogenicity is not due to the inability of multiplication in vivo.

  • PDF

Transgenic Tobacco Expressing the hrpNEP Gene from Erwinia pyrifoliae Triggers Defense Responses Against Botrytis cinerea

  • Sohn, Soo-In;Kim, Yul-Ho;Kim, Byung-Ryun;Lee, Sang-Yeob;Lim, Chun Keun;Hur, Jang Hyun;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.232-239
    • /
    • 2007
  • $HrpN_{EP}$, from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the $hrpN_{EP}$ gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in $hrpN_{EP}$-expressing tobacco differed from that in plants expressing $hpaG_{Xoo}$ from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2004년도 The 2004 KSPP Annual Meeting & International Symposium
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • 제39권2호
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Identification of a host range determinant from Ralstonia solancearum race 3

  • Yeonhwa Jeong;Lee, Seungdon;Ingyu Hwang
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.71.2-71
    • /
    • 2003
  • Ralstonia solancearum infects many solanaceous plants, however race 3 infects only potato and tomato weakly. To identify genes responsible for race specificity of R. solanacearum, we mobilized genomic library of LSD2029 (race 3) into LSD341 (race 1) and inoculated 1,000 transconjugants into hot pepper. One transconjugant that did not induce wilt symptom in hot pepper was isolated. We found that a cosmid clone, pRSl, conferred avirulence to LSD341. By deletion and mutational analyses of pRSl, we found the 0.9-kb PstI/Hindlll fragment carries avirulence functions. We sequenced the fragment and identified one possible open reading frame, a rsal gene, possibly encoding 110 amino acids. The rsal was preceded with a plant-inducible promoter (PIP) box, indicating that the gene might be regulated by HrpB. Interestingly, the promoter region of the rsal homolog in the strain GM11000 (race 1) did not have the PIP box. Rsal did not show any significant homologies with proteins in the database, indicating th e protein is different from the previously reported avirulence proteins. When we mutated the rsal gene by marker-exchange in LSD2029, the mutant was less virulent in potato.

  • PDF

pfhrp2/pfhrp3 유전자 결여 열대열 말라리아 특이 진단을 위한 생물정보학 기반 차세대 항원 단백질 선정 (Selection of next-generation antigen protein for diagnosis of pfhrp2/pfhrp3 gene deleted plasmodium falciparum based on bioinformatics)

  • 서승환;이지후;최재원;김학용
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2016년도 춘계 종합학술대회 논문집
    • /
    • pp.187-188
    • /
    • 2016
  • 열대열 말라리아(Plasmodium falciparum, P. falciparum, P. f) 신속진단키트의 경우, P. falciparum에 특이적인 단백질로써 Histidine Rich Protein 2 (PfHRP2)가 사용되고 있다. 그러나 최근 연구에서 남아메리카와 중앙아메리카를 중심으로 pfhrp2/pfhrp3 유전자가 결여된 P. falciparum 열원충이 나타나는 것으로 보고된 바 있다. 본 연구에서는 생물정보학을 기반으로 PfHRP2 항원 단백질을 대체할 수 있는 새로운 P. falciparum 특이 항원 단백질을 선정하고자, PlasmoDB에서 5,777개의 P. falciparum 관련 단백질 리스트를 얻었다. 이후 NCBI BLAST를 통해 단백질 아미노산 서열을 분석하고 정상인에게 존재하지 않으며, 동시에 다른 말라리아 열원충(P. vivax, P. ovale, P. malariae, P. knowlesi)에도 존재하지 않는 P. falciparum 특이 아미노산 서열을 가진 단백질 15개를 추출하였다. IEDB analysis를 이용하여 에피토프, 수용성, 베타-턴, 접근성, 유연성, 면역원성을 분석하여 높은 평균값을 갖는 상위 3개 단백질을 선별하였다. KEGG pathway와 EMBL-EBI를 통해 선별된 3개 단백질의 혈액내 검출 가능성 및 아미노산 서열의 보존성을 분석하여 최종적으로 Glutamate-Rich Protein (GLURP)을 선정하였다. AIDA를 통해 단백질 아미노산 서열을 이용한 3차 구조 예측으로 GLURP의 구조 및 항체와의 결합을 도식화하였다. 최종적으로 선정한 GLURP는 pfhrp2/pfhrp3 유전자 결여 P. falciparum까지 특이적으로 진단이 가능하여 차세대 P. falciparum 특이 신속진단키트 개발에 도움이 될 수 있을 것으로 기대한다.

  • PDF

Pseudomonas syringae pv. tabaci 에서 LuxR-type 전사조절자인 PsyR에 의한 병원성 유전자들의 조절 (A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci)

  • 최연희;이준승;윤소라;백형석
    • 생명과학회지
    • /
    • 제25권2호
    • /
    • pp.136-150
    • /
    • 2015
  • Pseudomonas syringae pv. tabaci 11528은 담배를 숙주로 하여 wildfire disease를 일으키는 식물 병원성 세균이다. P. syringae pv. tabaci psyR deletion mutant를 이용하여 swarming motility, tabtoxin 생산능, siderophore 생산능, AHL 생산능 등의 phenotypic test를 수행하였다. psyR deletion mutant는 wild-type 균주보다 swarming motility가 증가하였고, tabtoxin 생산 또한 증가하였다. 하지만 siderophore와 AHL 생산능은 감소하였고 virulence 또한 지연되었다. 이러한 결과로 PsyR이 QS regulator로 작용한다는 사실과 더불어 병원성 유전자의 조절에도 관여한다는 것을 확인하였다. PsyR이 각각의 병원성 유전자의 발현을 조절하는 regulator들에게 미치는 영향을 전사단계에서 확인하기 위해 fur, gacA, psyI, prhI, prhA, hrpR, hrpA 유전자들을 정량적 real-time PCR (qRT-PCR) 방법으로 확인하였다. 또한 PsyR에 의한 병원성 유전자 조절이 DNA상에 직접적으로 결합하여 일어나는 것인지 아니면 다른 경로를 통해 간접적으로 일어나는 것인지를 확인할 필요가 있어 정제한 PsyR 단백질과 병원성 관련 유전자들의 upstream region 서열을 이용하여 electrophoretic mobility shift assay (EMSA)를 수행한 결과 본 연구에서 선정한 병원성 관련 유전자들이 PsyR에 의해 직접적으로 조절되지는 않는다는 사실을 밝혔다.