• Title/Summary/Keyword: hourly rainfall

Search Result 182, Processing Time 0.031 seconds

Rainfall Adjustment on Duration and Topographic Elevation (지속시간 및 표고에 따른 강우량 보정에 관한 연구)

  • Um, Myoung-Jin;Cho, Won-Cheol;Rim, Hae-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.511-521
    • /
    • 2007
  • The objective of this study is to develop a method of rainfall adjustment on duration and topographic elevation for rainfall data in Jejudo. The method of rainfall adjustment is based on the polynomial regression analysis for the hourly rainfall data and the distribution of observatories of korea meteorological administration. As the results of modeling have shown, duration and rainfall are more correlated than topographic elevation and rainfall, and the model which considers only an elevation exaggerates the amount of rainfall adjustment. Hence the model of duration-elevation-rainfall is more competitive to the natural rainfall event than the model of topographic elevation-rainfall. However this model require to supplement a small number of rainfall observatories and short observed period.

Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data (강우자료의 시간해상도에 따른 강우 분해 성능 평가)

  • Lee, Jeonghoon;Jang, Juhyoung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2018
  • In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.

A Study of Distribution of Rainfall Erosivity in USLE/RUSLE for Estimation of Soil Loss (토양유식공식의 강우침식도 분포에 관한 연구)

  • Park, Jeong-Hwan;U, Hyo-Seop;Pyeon, Jong-Geun;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.603-610
    • /
    • 2000
  • Climate factors such as rainfall, temperature, wind, humidity, and solar radiant heat affect soil erosion. Among those factors, rainfall influences soil erosion to the most extent. The kinetic energy of rainfall breaks away soil particles and the water flow caused by the rainfall entrains and transport them downstream. In order to estimate soil erosion, therefore, it is important to determine the rainfall erosivity. In this study, the annual average Rainfall Erosivity(R) in Korea, an important factor of the Universal Soil Loss Equation(USLE) and Revised Equation(RUSLE), has been estimated using the nationwide rainfall data from 1973 to 1996. For this estimation, hourly rainfall data at 53 meterological stations managed by the Meterological Agency was used. It has been found from this study that the newly computed values for R are slightly larger than the existing ones. It would be because this study is based on the range of rainfall data that is longer in period and denser in the number of gauging stations than what the existing result used. The final result of this study is shown in the form the isoerodent map of Korea.

  • PDF

A Spatial-Temporal Characteristics of Rainfall in the Han River Basin (한강유역 강우의 시. 공간적 특성)

  • 이동률;정상만
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.75-85
    • /
    • 1992
  • Continuous recorded hourly rainfalls during the wet season in the Han River basin are separated into single storm events between storms. For the storm events, storm numbers, total rainfall, duration, and intensity are analyzed, and the basin is divided into three areas, which have a similar rainfall characteristics. The criterion of separation of independent storms, which is proposed by Restrepo and Eagleson, is examined and its criterion is compared with temporal characteristics of single storm events separated with wime between storms.

  • PDF

A Study on the Safety Management of Streamflows by the Kalman Filtering Theory (Kalman Filtering 이론에 의한 하천 유출 안전관리에 관한 연구)

  • 박종권;박종구;이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.122-127
    • /
    • 1996
  • The purpose of this study has been studied and investigated to prediction algorithms of the Kalman Filtering theory which are based on the state-vector description, including system identification, model structure determination, parameter estimation. And the prediction algorithms applied of rainfall-runoff process, has been worked out. The analysis of runoff process and runoff prediction algorithms of the river-basin established, for the verification of prediction algorithms by the Kalman Filtering theory, the observed historical data of the hourly rainfall and streamflows were used for the algorithms. In consisted of the above, Kalman Filtering rainfall-runoff model applied and analysised to Wi-Stream basin in Nak-dong River(Basin area : $472.53km^2$).

  • PDF

Study on Rainfall Regional Frequency Analysis (강우 지역빈도해석의 적용성 연구)

  • Shin Hong Joon;Nam Woo Sung;Heo Jun Haeng;Kim Kyung Duk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.593-598
    • /
    • 2005
  • At-site analysis is not appropriate if the record length is shorter than target return period T. If the record length is longer than 27 years, then at-site analysis may be sufficient(Institute of Hydrology, 1999). However, in such a case, regional frequency analysis is recommended for purpose of comparison. Record lengths of annual maximum rainfall data in Korea are usually shorter than 50 years. It is therefore essential to apply regional frequency analysis for estimating rainfall quantiles of more than 100 years return period. In this research, regional rainfall frequency analysis is performed for hourly rainfall data of South Korea. Homogeneous regions are idntified by clusgter analysis which is a standard method of statistical multivariate analysis for dividing a data set into groups. An appropriate distribution is chosen by goodness-of-fit test. GLO is found to be an appropriate distribution as a result of goodness-of-fit measure (Hosking & Wallis, 1997). Simulation experiments are performed to check the performance of frequency analysis techniques. The effects of discordant sites on quantiles are considered.

  • PDF

Mesoscale Features and Forecasting Guidance of Heavy Rain Types over the Korean Peninsula (한반도 호우유형의 중규모 특성 및 예보 가이던스)

  • Kim, Sunyoung;Song, Hwan-Jin;Lee, Hyesook
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.463-480
    • /
    • 2019
  • This study classified heavy rain types from K-means clustering for the hourly relationship between rainfall intensity and cloud top height over the Korean peninsula, and then examined their statistical characteristics for the period of June~August 2013~2018. Total rainfall amount of warm-type events was 2.65 times larger than that of the cold-type, whereas the lightning frequency divided by total rainfall for the warm-type was only 46% of the cold-type. Typical cold-type cases exhibited high cloud top height around 16 km, large reflectivity in the upper layer, and frequent lightning flashes under convectively unstable condition. Phenomenally, the cold-type cases corresponded to cloud cluster or multi-cell thunderstorms. However, two warm-type cases related to Changma and typhoon were characterized by heavy rainfall due to long duration, relatively low cloud top height and upper-level reflectivity, and the absence of lightning under the convectively neutral and extremely humid conditions. This study further confirmed that the forecast skill of rainfall could be improved by applying correction factor with the overestimation for cold-type and underestimation for warm-type cases in the Local Data Assimilation and Prediction System (LDAPS) operational model (e.g., BIAS score was improved by 5%).

Analysis of Slope Hazard Triggering Factors through Field Investigation in Korea Over the Past Four Years (최근 4년간 국내 사면재해 현장조사를 통한 유발인자 분석)

  • Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.47-58
    • /
    • 2015
  • Triggering rainfall and geologic conditions with the state of slope hazard were investigated based on the field investigation and collected data on the slope hazard during the period between 2011 and 2014 in Korea. Analysis results showed that most of slope hazards occurred in metamorphic rock and debris flow was the most frequent type of slope hazard. Slope hazard increased when the higher monthly mean rainfall was recorded. However, most of slope hazard occurred when certain time elapsed after the moment of maximum hourly rainfall. Finally, more than one month of long-term rainfall was shown to be related to the frequency of slope hazard in the period.

A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function (근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석)

  • Lee, Jeongjin;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF