• Title/Summary/Keyword: hotwire

Search Result 32, Processing Time 0.025 seconds

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선가공장치 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Yang Dong-Yol;Park Seung-Kyo;Kim Chan-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.194-202
    • /
    • 2005
  • The objective of this paper is to develop a multi-functional hotwire cutting system (MHC) using EPS-foam block or plate as the working material. Because the MHC apparatus employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable, it allows the easy fabrication of various 3D shapes, such as (1) an axisymmetric shape or a sweeping cross-sectioned pillar shape using the hot-strip in the form of sweeping surface and EPS foam block on the turntable, (2) a polyhedral complex shape using the hotwire and EPS foam block on the turntable, and (3) a ruled surface approximated freeform shape using the hotwire and EPS foam plate. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

Investigation of Cutting Characteristics of Linear Hotwire Cutting System and Bonding Characteristics of Expandable Polystyrene Foam for Variable Lamination Manufacturing(VLM) Process (가변 적층 쾌속 조형 공저 개발을 위한 발포 폴리스티렌폼의 선형 열선 절단시스템 절단 특성 및 접착강도 특성에 대한 연구)

  • Ahn, Dong-Gyu;Lee, Sang-Ho;Yang, Dong-Yol;Shin, Bo-Sung;Lee, Yong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.185-194
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain of RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S), and to investigate characteristics of part material, cutting characteristics by using linear hotwire cutting system and bonding. Experiments were carried out to investigate mechanical properties of part material such as anisotropy and directional tensile strength. In order to obtain optimal dimensional accuracy, surface roughness, and reduced cutting time, addition experiments were performed to find the relationship between cutting speed and cutting offset of hotwire, and heat generation of hotwire per unit length. So, adhesion strength tests according to ASTM test procedure showed that delamination did not occur at bonded area. Based on the data, a clover-shape was fabricated using unit shape part(USP) it is generated hotwire cutting. The results of present study have been reflected on the enhancement of the VLM-S process and apparatus.

  • PDF

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선절단장치 개발)

  • 이상호;김효찬;양동열;박승교;김찬국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1414-1417
    • /
    • 2004
  • A thick-layered RP process, transfer-type variable lamination manufacturing using expandable polystyrene foam (VLMST) has been developed to have the advantageous characteristics such as high building speed, low cost for introduction and maintenance of VLM-ST apparatus, and little staircase surface irregularities of parts. However, VLM-ST has difficulty fabricating an axisymmetric shape and a large-sized freeform shape because of the limited sloping angles and small build size. The objective of this paper is to develop a multi-functional hotwire cutting system using EPS-foam (MHC). MHC employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

  • PDF

A Description Method of Linear Hotwire Posture in Space for the Cutting System of VLM-S (가변적층 쾌속조형공정용 CAD 시스템 개발을 위한 3차원 공간상에서의 선형열선절단기 자세표현에 관한 연구)

  • 이상호;문영복;안동규;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.11-14
    • /
    • 2001
  • In all Rapid Prototyping(RP) processes, computer-aided design(CAD) solid model is sliced into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same time, bonded onto the previous layer, the stacked layers form a physical part of the model. The objective of this study is to develop a method for obtaining necessary coordinates$(x,\;y,\;\theta_x,\;\theta_y)$ to position linear hotwire of the cutting system in three-dimensional space for the Variable Lamination Manufacturing process (VLM-S), which utilizes expandable polystyrene foam sheet as part material. In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such as a spanner, a patterned columm, and a pyramid were made using data obtained from the method.

  • PDF

Tunable AC Mode Hotwire Anemometry (교류방식 열선 유속 측정법 개발)

  • Chung, Won-Seok;Kwon, Oh-Myoung;Choi, Du-Seon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1337-1341
    • /
    • 2003
  • This paper suggests and demonstrates a novel flow measurement technique, tunable AC mode hotwire anemometry that allows simple integration, robust measurement, and extremely high accuracy. The principle and simple theoretical analysis of the technique are shown. To find the optimal frequency at which the phase lag becomes most sensitive to flow speed change, the phase lag was measured scanning the heating frequency from 1 to 100 Hz, while the flow speed of ethanol was increased stepwise from 0 to 10 mm/s. To optimize the sensitivity of technique, the periodic thermal characteristic of the hotwire should be understood and is currently under study.

  • PDF

Calculation of rotational angle of the Linear Hotwire Cutting System for VLM-S (VLM-S용 선형열서절단기의 회전각 계산과 적용예)

  • 이상호;안동규;최홍석;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.883-886
    • /
    • 1997
  • In all Rapid Prototyping (RP) processes, a CAD solid model is sliced ito thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same tim, bonded onto the previous layer; the stacked layers form a physical part of the model. The objective of this study is to develop a methode for calculating the rotational angle(θ/sub x/, θ/sub y/) of the linear hotwire cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such s a screw, an extruded cross, and a figure of Sonokong, were made using the data obtaiend from the method.

  • PDF

On Energy Saving and Quality Improvement of Food Process (1). Applications of Hotwire Monitoring System for Food Biotechnology (식품공정의 에너지 절감과 품질향상에 관한 연구(1). 세선 가열법의 식품 생물공학에의 응용)

  • 허종화;크라우
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.403-410
    • /
    • 1990
  • Application of the Rheocatch Hotwire Monitoring System for food biotechnology process was evaluated. The growth of microogranism, E coli (JM 83 and Sigma) and Corynesccfertun glutamicum, were monitored. in the fermentor. The cell growth could not be detected the temperature differences between the hotwire and samples($\Delta$T) as indicated by the monitoring system during the fermentation processes. The cell concentration of less than 2g/dl was not sufficient to generate the measurable temperature difference in the fermentor. In order to calibrate the Rheocatch Monitoring System, the temperature difference as a function of solute concentration (microbial cells, sodium cholide, sucrose and dextran) was studied. The relationship between $\Delta$T and the concentration of microbial cells, sucrose and dextran can be expressed in a power series. Further studied with dextran indicated that viscosity and/or kinematic viscosity increase exponentially with an increase in $\Delta$T This is regardless of the concentration and molecular weight of dextran. $\Delta$T linearly increases with the logarithm of molecular weight, while the logarithm of viscosity and the logarithm of kinematic viscosity increase with the logarithm of molecular weight.

  • PDF

Calculation of Rotation Angle of the Linear Hotwire Cutting System for VLM-s (VLM-S용 선형열선절단기의 회전각 계산)

  • Lee, Sang-Ho;An, Dong-Gyu;Yang, Dong-Yeol;Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • Most of Rapid Prototyping (RP) process adopt a solid Computer Aided Design (CAD) model, slicing into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successive1y deposited and at the same time, bonded onto the previous layers; the stacked layers form a physical part of the model. The objective of this study is to develop a method for calculating the rotation angle ($$\theta$_x, $\theta$_y$) of hotwire of the cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes. such as a screw, an extruded cross, and free surface bodies such as miniatures of the monkey(a figure of Sonokong), were made using the data obtained form the method.