• Title/Summary/Keyword: hotspot of house price volatility

Search Result 2, Processing Time 0.013 seconds

Modeling Spatial Patterns of an Overheated Speculation Area (투기과열지역의 공간패턴 모형화)

  • Sohn, Hak-Gi
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.104-116
    • /
    • 2008
  • Overheated speculation areas which have high potential of becoming speculative are the target of many real estate policies. This paper proposes a model for spatial patterns of house price volatility and suggests a spatial pattern of overheated speculation areas. House prices are determined by economic behaviors of sellers and buyers who have rational or adaptive expectations. Spatial patterns of house price volatility are formed by tendencies of their economic behavior. If there is a majority of adaptive sellers and buyers in an area, it may appear as a "hotspot" by showing high volatility of house prices and simultaneous price increases. Overheated speculation areas are formed by adaptive sellers and buyers who want to realize maximum expectation profit, therefore these areas patterns are defined as hotspot patterns of price volatility.

A Spatial Statistical Method for Exploring Hotspots of House Price Volatility (부동산 가격변동 한스팟 탐색을 위한 공간통계기법)

  • Sohn, Hak-Gi;Park, Key-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.3
    • /
    • pp.392-411
    • /
    • 2008
  • The purpose of this paper is to develop a method for exploring hotspot patterns of house price volatility where there is a high fluctuation in price and homogeneity of direction of price volatility. These patterns are formed when the majority of householders in an area show an adaptive tendency in their decision making. This paper suggests a method that consists of two analytical parts. The first part uses spatial scan statistics to detect spatial clusters of houses with a positive range of price volatility. The second part utilizes local Moran's I to evaluate the homogeneity of direction of price volatility within each cluster. The method is applied to the areas of Gangnam-Gu, Seocho-Gu, and Songpa-Gu in Seoul from August to November of 2003; the Participatory Government of Korea designated these areas and this period as the most speculative. The results of the analysis show that the area around Gaepo-Dong was as a hotspot before the Government's anti-speculative 10.29 policy in 2003; the house prices in the same area stabilized in October, 2003 and the area was identified as a coldspot in December, 2003. This case study shows that the suggested method enables exploration of hotspot of house price volatility at micro spatial scales which had not been detected by visual analysis.