• Title/Summary/Keyword: hot-wire measurements

Search Result 91, Processing Time 0.021 seconds

Wind Flow over Hilly Terrain (언덕지형을 지나는 유동에 관한 연구)

  • 임희창;김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

Influence of the Wake Behind Rectangular Bars on the Flow and Heat Transfer in the Linear Turbine Cascade (사각주 후류가 선형터빈익렬의 유동 및 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon Hyun;Sim, Jae Kyung;Woo, Chang Soo;Lee, Dae Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.864-870
    • /
    • 1999
  • An experimental study Is conducted in a four-vane linear cascade in order to examine the influence of the wake behind rectangular bars on the flow and heat transfer characteristics. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress are measured using a hot-wire anemometer, and to measure the convective heat transfer coefficients on the blade surface liquid crystal/gold film Intrex technique is used. Each of experimental cases is characterized by the unsteadiness measured at the entrance of the cascade. The wake behind the rectangular bars enhances the turbulent motion of the flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the blade surface increase with increasing unsteadiness.

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Low Temperature Deposition of ${\mu}c$-Si:H Thin-films for Solar Cell Application (태양전지용 ${\mu}c$-Si:H 박막의 저온증착 및 특성분석)

  • Chung, Y.S.;Lee, J.C.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.;Kwon, S.W.;Lim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1592-1594
    • /
    • 2003
  • This paper presents the deposition and characterization of microcrystalline silicon(${\mu}c$-Si:H) films by HWCVD(Hot-wire Chemical Vapor Deposition) method at low substrate($300^{\circ}C$). The filament temperature, pressure and $SiH_4$ concentration were determined to be a critical parameter for the deposition of poly-Si films. Series A was deposited under the conditions of $1380^{\circ}C$(Tf), 100 mTorr and $2{\sim}10%\{SC:SiH_4/(SiH_4+H_2)\}$ for 60 min. Series B was deposited under the conditions of $1400{\sim}1450^{\circ}(T_f)$, 30 mTorr and $2{\sim}12%$(SC) for 60 min. The physical characteristics were measured by Raman and FTIR spectroscopy, dark and photoconductivity measurements under AM1.5 illumination.

  • PDF

Study on combustion instabilities in gas turbine combustors (가스터빈 연소기에서의 연소 불안정 측정에 관한 연구)

  • Kim, Dae-Sik;Lee, Jong-Guen;Santavicca, Domenic
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.430-432
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency and operating conditions.

  • PDF

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Flow Characteristics of Two-Dimensional Turbulent Stepped Wall Jet (2次元 亂流 Stepped Wall Jet 의 流動特性)

  • 부정숙;김경천;박진호;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.732-742
    • /
    • 1985
  • Measurements of mean velocity and turbulence characteristics are obtained with a linearized constant temperature hot-wire anemometer in a two-dimensional turbulent jet discharging parallel to a flate. Wall static pressure distribution is also measure. The Reynolds number based on the jet nozzle width (D) is about 42,000 and the step height is 2.5D. The reattachment length is found to be 7.5D by using both wool tuft and oil methods. Upstream of the reattachment point, there exist double coherent structures and mean velocity, Reynolds stresses and triple product profiles are asymmetric about jet center line due to the influence of streamline curvature and recirculating flow region. Near the reattachment point, wall static pressure and turbulence quantities change its shape rapidly because of the large eddies by the solid wall. Especially, turbulence intensity has a maximum value in the reattachment regin, then decreases slowly in the redeveloping wall jet ragion. Downstream of X/D=14, a single large scale eddy structure is formed. Far downstream affer the reattachment(X/D.geq.18) mean velocity profile, the decay of maximum velocity and the variation of jet half width are nearly similar to those of plane wall jet, but the Reynolds stresses are higher than those of the latter.

Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.

Acoustical Similarity for Small Cooling Fans Revisited (소형 송풍기 소음의 음향학적 상사성에 관한 연구)

  • 김용철;진성훈;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.196-201
    • /
    • 1995
  • The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.

  • PDF