• 제목/요약/키워드: hot work

검색결과 642건 처리시간 0.025초

Hot Deformation Behavior of P/M Al6061-20% SiC Composite

  • Asgharzadeh, Hamed;Simchi, Abdolreza
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.855-856
    • /
    • 2006
  • In the present work, hot workability of particulate-reinforced Al6061-20%SiC composite produced by direct hot extrusion technique was studied. Uniaxial hot compression test at various temperatures and strain rates was used and the workability behavior was evaluated from the flow curves and the attendant microstructures. It was shown that the presence of SiC particles in the soft Al6061 matrix deteriorates the hot workability. Bulging of the specimens and flow lines were observed, which indicate the plastic instability during hot working. Microstructure of the composites after hot deformation was found to be heterogeneous, i.e. the reinforcement clusters were observed at the flow lines. The mechanism of deformation was found to be controlled primarily by dynamic recrystallization.

  • PDF

열간압연 공정에서 롤 프로파일 예측모델 향상 (Improvement of Roll Profile Prediction Model in Hot Strip Rolling)

  • 정제숙;유종우;박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.229-232
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them..

  • PDF

열간압연 공정에서 롤 프로파일 예측모델 향상 (Improvement of Roll Profile Prediction Model in Hot Strip Rolling)

  • 정제숙;유종우;박해두
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

Investigation of Thermo-mechanical Behavior of Work Roll and Roll Life in Hot Strip Rolling

  • C.G.Sun;Yun, C.S.;Chung, J.S.;Hwang, S.M.
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.161-175
    • /
    • 1997
  • The effects of various process paramenters on the detailed aspects of the thermo-mechanical behavior of work roll and on the roll life are investigated via a series of process simulation, using a mathematical model presented previously. The process conditions are discussed that are favorable or optimal in terms of reducing roll wear in the front finishing stands.

  • PDF

열간 단조용 작업보조로봇 개발 및 근전도 신호를 이용한 성능 평가 (Development of an Assistant Robot for use in Hot Forging Work Sites and Its Performance Evaluations using Electromyographic Signals)

  • 송지연;김황근;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.427-433
    • /
    • 2015
  • Hot forging industry workers are prone to encounter several health risks due to lack of automation and poor working environment conditions. These workers particularly suffer from muscle fatigue owing to the constant handling of heavy products during the forging process. Thus we developed an assistant robot for workers who carry out hot forging tasks. The purpose of a robot is to compensate gravity-loads for heavy products. To verify the functionality of a robot, we performed a muscle fatigue analysis using Electromyography (EMG) signals. Four muscles of the upper extremity were chosen to measure muscle activity. And experiment conditions were setup to imitate the hot forging process. Post experimental analysis of the captured muscle activity revealed a reduction in the median frequency of the EMG signals, which means clear fatigue reduction due to a robot's assistance. The developed assist robot with compact and economical components can be efficiently utilized at forging work sites to create better working conditions for operators.

형상 엣저 롤을 이용한 열간 조압연 공정의 슬래브 폭 퍼짐 예측 모델 (A Model for Slab Width Spread during Hot Rough Rolling Using a Profiled Edger Roll)

  • 이경훈;한진규;유광현;김형진;김병민
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.102-108
    • /
    • 2016
  • The aim of the current study was to develop an advanced prediction model for the slab width spread during hot rough rolling. Rough rolling consists of both vertical rolling using a set of profiled edger rolls and horizontal rolling using a set of plain work rolls. FE-simulations were performed to investigate the influences of process variables such as initial slab width, initial thickness, sizing draft, edger roll draft and work roll draft on the final slab width variation. From a statistical analysis of the simulation results, an advanced model, which can predict the slab width spread during the edger rolling and horizontal rolling, was developed. The experimental hot rolling trials showed that the newly developed model provided fairly accurate predictions on the slab width spread during hot rough rolling process using a profiled edger rolls.

열연중 Work Roll의 3차원 비정상상태 열변형 유한요소 해석 (Finite Element Analysis of 3D Transient Thermo-mechanical Behav-ior of Work Roll in Hot Strip Rolling)

  • 황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.261-264
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional tran-sient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the inter-dependence between the thermo-mechanical behavior of the strip and that of the work roll which arises from roll-strip contact as well as with the interdependence between the thermal and mechanical behav-ior Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF

플로우가이드를 고려한 평금형 열간 압출의 3차원 강-점소성 유한요소해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of a Hot Square Die Extrusion with Flow Guide)

  • 강연식;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.138-144
    • /
    • 1996
  • In square die extrusion, flow guide and ide land play important roles for controlling the metal flow in die design. In the present work, the flow guide and the die land are considered for the die construction. Based on ALE description , rigid-viscoplastic finite element analysid is carried out to assess the effects of process and die design parameters. The thermal state affects greatly the product quality in hot extrusion. in the present work, the temperature distribution is also analyzed in theframwork of rigid-viscoplastic finite element computation. As a computational example, hot square die extrusion with flow guide and die land has been analyzed for the profile of a H section.

  • PDF

열간금형 공구강의 복합열처리 특성에 관한 연구 (Combined Heat Treating characteristics of Hot Work Tool Steel)

  • 김영희;김도경
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.315-323
    • /
    • 1998
  • This study has been conducted to develope the combined heat treating technique of gas carburising - gas nitriding and gas carburising to improve the hot working performance of type H3 hot work tool steel. Case depth and carbrides coarsening were increased with increasing carburising temperature and time, respectively. Surface hardness showed decreasing tendency with increasing 2nd tempering temperature after carburising treatment. After carburising, 2nd treatment at 500 to 600 was chosen according to a hardness demand of final product. High temperature tempering resistance showed more excellent quality during such carburising-nitriding or carburising than complex treatment as after conventional hardening.

  • PDF

레벨링 공정 해석에 의한 교정 조건이 열연 고장도 강판의 잔류음력에 미치는 영향 연구 (Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels by Deformation Analysis of Leveling Process)

  • 박기철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2009
  • In order to analyze the effect of leveling conditions on residual stress evolution of hot rolled high strength steels, a numerical algorithm was developed. It was able to implement the effect of plastic fraction (intermesh) in leveling, line tension, work roll bending, and initial residual stress and curl distribution. The effect of work roll bending on residual stress and curl were studied by using the developed program. The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  • PDF